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ABSTRACT

The automatic generation of semantic maps from remotely

sensed imagery by supervised classifiers has seen much effort

in the last decades. The major focus has been on the improve-

ment of the interplay between feature operators and classi-

fiers, while experimental design and test data generation has

been mostly neglected. This paper shows that sampling strate-

gies applied to partition the available reference data into train

and test sets have a large influence on the quality and reliabil-

ity of the estimated generalization error. It illustrates and dis-

cusses problems of common choices for sampling schemes,

i.e. the violation of the independence assumption and the

illusion of the availability of global knowledge in the train-

ing data. Furthermore, a novel sampling strategy is proposed

which circumvents these problems and achieves a less biased

estimate of the classification error.

Index Terms— Supervised classification, Sampling, Er-

ror estimation

1 Introduction
Remote Sensing (RS) is one of the major tools for the obser-

vation, analysis, and interpretation of natural and manmade

processes on the surface of the earth. Corresponding sensors

are typically mounted on airplanes or satellites and are able to

acquire measurements over relatively large areas in a time and

cost efficient way. Especially sensors, that produce images

of the earth’s surface, have gained importance, such as opti-

cal cameras, hyperspectral sensors (HS), or synthetic aperture

radar (SAR).

The semantic interpretation of RS images provides the ba-

sis to many high-level interpretation processes, such as risk

and damage assessment, monitoring of urban growth, land

cover mapping, road network extraction, and object detection.

The task to assign a class label to each pixel in the image is

commonly addressed by supervised learning approaches. The

parameters of a sufficiently complex model are adjusted dur-

ing a training phase with the aim that a given input (i.e. a data

sample) produces a given output (i.e. a class label). The su-

pervision is thus provided by the availability of training data,

i.e. images alongside with the corresponding reference data

(e.g. manually labeled semantic maps). During application

the trained method is applied to unlabeled data and estimates

(a) Train data (b) Test data

Fig. 1: Cluster Sampling applied to Oberpfaffenhofen (OPH)

dataset.

the most probable class label. The usability of the final prod-

uct largely depends on the accuracy and reliability of the pro-

duced semantic maps. The training error (i.e. the error on the

training data) mainly depends on the model capacity. Given

a sufficiently complex method it can often be easily pushed

close to 0%. This corresponds most likely to a mere memo-

rizing of the training data, which is why the performance of

the classifier on the training data is of little interest. More im-

portant is its performance on previously unseen data, i.e. its

generalization capabilities. The estimation of the generaliza-

tion error is achieved by dividing the available labeled data

into two (disjoint) sets, where one is used during training and

the other during testing.

The production of reference data nearly always involves

manual processing and is thus cost and time consuming. In

particular, because many RS data (e.g. SAR or HS images)

are more difficult to interpret by human operators than close-

range optical images. This leads to the common practice to

train and validate methods on one single image only. In this

case, the sampling strategy to produce train and test data has

a large influence on the estimation accuracy of the general-

ization error, which might explain the gap between the sci-

entific progress in the automatic interpretation of RS images

and their applicability in practice [1].

For an unbiased estimate of the generalization error, train

and test data must be independent while test and real world

application data should be identically distributed. The com-

mon procedure for unstructured data is to randomly sample

training and test data while ensuring that both sets are disjoint.
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Since early classification approaches of RS images ignore the

spatial structure of image data and are based on single pix-

els alone, this method was thought to be sufficient. However,

the independence assumption is violated since both, the value

and label of adjacent pixels in an image, are spatially highly

correlated. This problem is only increased by the joint us-

age of spectral-spatial information as exploited by all modern

classification pipelines, such as data preprocessing (e.g. noise

reduction by local averaging), feature extraction (e.g. textu-

ral features), classification (e.g. patch based classification),

or post processing (e.g. random field approaches). The im-

plicit or explicit usage of spatial information leads to locally

stronger correlated samples. Thus, disjoint train and test sets

are not sufficient, but a pixel that contributed in any way to

calculate the values of a training sample must not be used for

testing and test samples should not be in close proximity to

train samples to avoid correlation.

To train and test on the same image does not only in-

crease the risk of violating the independence assumption, but

has also implications with respect to the assumption of iden-

tically distributed data. Before application, the method will

be trained on all available training data and will then be used

to predict the labels of new data. Categories like “Forest” or

“City” show a strong intra-class variation even if restricted to

a certain geographic location avoiding differences caused by

different cultures (e.g. cities in Europe vs. North America)

or habitats (e.g. European forests vs. tropical rain forests).

In many application scenarios it is infeasible to collect train-

ing data that covers the whole data variation. Restricting the

training data to one single image limits the data distribution

to a small fraction of the true distribution and thus underes-

timates the true variance of the data. A successful classifica-

tion method thus needs to be able to generalize from a low-

variance training set to a high(er) variance test set. If train and

test data are sampled globally from the same image, the vari-

ance difference between train and application phase is highly

underestimated, which leads to a severe underestimation of

the generalization error.

The majority of research is focussed on improving the

classification performance, while above discussed problems

have been mostly neglected. That spatially correlated train

and test samples lead to a biased estimate of the generaliza-

tion error was already noted in [2]. The increase of spatially

correlated data by spectral-spatial features and its influence

on the quality of the estimate of the generalization error is

discussed in [3] for hyperspectral images. A recent extension

[4] of this work proposes a sampling scheme that minimizes

the spatial overlap between train and test data. However, their

method aims to capture the full spectral variation of the image

by globally sampling compact regions.

Our work evaluates different sampling strategies as de-

scribed in Sec. 2 by solving a typical land use classification

task for different sensor types including optical, HS, as well

as SAR images (Sec. 3). Furthermore, we propose a new sam-

pling strategy (illustrated in Fig. 1) that selects training data

for each class locally as well as compactly and thus does not

violate the independence assumption. It also simulates a real-

istic gap of data variation between train and application phase.

The conducted experiments confirm previous findings regard-

ing random sampling techniques and show that the proposed

sampling scheme leads to less biased error estimates.

Finally it should be noted that above discussed prob-

lems can only truly be solved by creating a sufficiently large

database along with reference data. The creation and usage

of realistic and standardized benchmark data (as e.g. in the

DASE [5] project) is a first step in that direction and should

be of utmost importance for the RS community.

2 Sampling Strategies
The simplest sampling scheme, that uses the whole dataset for

training as well as for testing, is an obvious violation of the

independence assumption, leads to an severe underestimation

of the generalization error, and is thus (hopefully) never done

in practice. The most often used scheme is denoted as (strat-

ified) Random (R) Sampling. Randomly selecting (labeled)

pixels from the whole image would lead to strongly imbal-

anced training data including empty classes as the worst case.

Thus, the R sampling scheme randomly selects the desired

amount of data points within the area of each class. Despite

this spatial constraint the training samples are randomly and

uniformly (as much as the spatial class distribution allows)

distributed over the image.

Despite the widespread use of R sampling it has a major

disadvantage: A certain amount of test pixels are very close

to pixels selected for training. The spatial context of images

renders adjacent pixels as correlated and thus violates the in-

dependence assumption. To avoid this problem a minimum

distance between train and test samples is sometimes intro-

duced, which needs to be at least as large as the window size

used to integrate spatial information. As this leads to a sig-

nificant decrease of the number of test samples, in particular

for small and strongly localized classes, this distance is often

selected as too small. Another strategy to ease this problem

is denoted as Patch (P) Sampling: The image is divided into

chessboard like blocks, training samples are selected by ap-

plying R sampling only in non-adjacent blocks, test samples

are from blocks that haven’t been used for training. Both of

the above mentioned sampling strategies have a common dis-

advantage: They underestimate the true variability of the data

by sampling data globally distributed over the available image

data. This is impossible in real application scenarios where

training images can only be acquired over a very restricted

portion of the earth but the method is expected to generalize

to other areas.

This paper proposes a sampling technique denoted as

Cluster (C) Sampling that aims to mitigate all of the above

mentioned problems by producing a balanced dataset with

minimal proximity (and thus minimal correlation) of train



and test samples as well as a non-global distribution of the

training data. For each class the spatial coordinates of all

samples are clustered into two clusters. Training samples

of a class are randomly drawn from one of the clusters, the

other cluster is used as test data. If two adjacent clusters

(of any classes) contribute to train and test data, a spatial

border around the corresponding training samples ensures

non-overlapping train and test areas. In this way train and

test samples of one class are maximally distinct from each

other (ensuring maximal independence between test and train

samples) as well as being locally compact simulating the

application case where train and application areas are not in

proximity.

3 Experiments

3.1 Data and Methods

The above sampling strategies are applied to three different

data sets: a) Indian Pines (IP) obtained by the AVIRIS sensor,

a commonly used benchmark dataset for hyperspectral im-

age analysis with 145 × 145px, 220 bands, and 16 classes;

b) Oberpfaffenhofen (OPH) obtained by the ESAR sensor

(DLR), a fully-Polarimetric Synthetic Aperture Radar (Pol-

SAR) image with 1390 × 6640px, 3 channels, and 5 classes;

and c) Dorsten (D) obtained by an aerial camera1, an optical

color image with 1000× 1000px, 3 channels, and 2 classes.

Feature extraction and classification methods are kept

simple for an easier interpretation of the obtained results and

consist of a) the 10 first spectral principal components as

well as local statistics of the average band intensity of the hy-

perspectral image (denoted as HS); b) standard polarimetric

features (log-intensities, span, entropy, anisotropy, α-angle)

of the PolSAR image (denoted as SAR); and c) Hue and

saturation as well as local statistics of the grayscale image of

the optical image (denoted as COL). For the three data based

features, a Random Forest classifier is used.

To illustrate the influence of the sampling strategy on the

classification rate even if an apparently useless feature is used,

we also employ a toy-feature comprising only the spatial po-

sition of a sample (LOC) which is classified with simple k-

Nearest-Neighbors (k = 1) to achieve maximal overfitting.

3.2 Results and Discussion

Fig. 2 shows mean and standard-deviation (based on 5 runs)

of the number of independent test samples in the OPH and IP

datasets for different sampling strategies, window sizes, and

number of training samples. For a small number of training

samples there are significantly less independent test samples

available for P- and C- as for R sampling. However, as the

number of training samples increases, the number of possible

test samples decreases exponentially for R sampling, while it

stays nearly constant for the schemes P and C.

1Geobasisdaten: Land NRW, Bonn, 2111/2009
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Fig. 2: Number of independent samples for different sam-

pling strategies and window sizes.

Pixel values do not only correlate due to spatial integra-

tion processes within the classification pipeline, but of course

also due to the underlying physical process causing the re-

ceived image signal. The variation of this process is locally

much smaller than globally, e.g. the trees within one for-

est are much more alike among each other as to trees in a

different forest further away. This is illustrated in Fig. 3a,

which shows the influence of the spatial distance to the near-

est training sample on the probability of correct classification

(for R sampling). Test samples in close proximity to a training

sample are significantly more likely to be classified correctly.

The distance for which the probability of correct classifica-

tion stays high does strongly correlate with the average size

of the objects in the image (which is larger for OPH as for IP).

Another effect contributing to the decrease of correct classi-

fication probability is the fact that class borders tend to get

misclassified, and class borders tend to be distinct to training

samples. Fig. 3b shows the relationship between the number

of used training samples and the average minimal distance

between test and train samples. While it decreases almost lin-

early for R sampling, it saturates in the case of P-, and stays

nearly unaffected for C sampling. The left part of Figures 3c-

3d illustrates the estimated generalization error for the dif-

ferent sampling methods. R- and P sampling achieve much

higher accuracy rates on the sampled test data as C sampling.

However, since the average minimal distance to the closest

trainings sample is much smaller in these cases (see Fig. 3b)

and has a tremendous influence on the classification perfor-

mance (Fig. 3a), it is likely that this is a biased estimate and

the true generalization error is higher. The estimated accu-

racy also increases for C sampling, but not as strong as for the

R- and P scheme. Since the minimal distance between train

and test data is only marginally influenced by the number of

samples (see Fig. 3b), this increase can be fully attributed to
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(c) Classification accuracy for dataset OPH based on SAR features (left)

and the location feature (right).
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(d) Classification accuracy for dataset D based on optical features (left) and

the location feature (right).

Fig. 3

the larger amount of training samples. This is supported by

the fact that the accuracy based on the location feature (right

part of Figures 3c-3d) increases for an increased amount of

training samples for R and P sampling, while it stays mostly

constant for C sampling.

One could argue that C sampling does not capture the

whole variation in the data and thus the accuracy has to be

lower. While this is obviously true, it is not a shortcoming

but a wanted feature of the proposed approach. In real world

scenarios it is very unlikely that samples of all possible object

variations of a class are available during training. Relying on

the illusion of globally distributed samples during the training

of the classifier leads to a severely underestimated generaliza-

tion error which is avoided by the proposed method.

4 Conclusion
Semantic interpretation of RS images, be it through machine

learning approaches, through carefully hand crafted features

and rules, or through a combination thereof, aims to produce

a black box classifier that can generalize across images to all

data of a certain type (e.g. all RS images of a certain sensor,

calibration, and use case). Yet, the difficulty of evaluating this

key ability is often underestimated. For proper evaluation, test

and training data must be independent and the test data must

be from the same distribution as the application data later on.

Capturing this full distribution can only be ensured by testing

on multiple images that at least span the different parameters

that might affect the data, such as soil moisture, incidence

angle, season, etc.

However, in the absence of a representative, multi-image

dataset, the train and test samples have to be drawn from the

same image, usually leading to a grave overestimation of the

generalization accuracy. We show that the choice of sampling

strategy has a big impact on the correlation between training

and testing data and that some sampling strategies are less

prone to this problem than others. Furthermore, we present

a novel sampling strategy, cluster sampling, which seeks to

mitigate these problems, at least as far as this can be achieved

with a single image.

We believe that large, multi-image datasets will be an im-

portant next step in semantic interpretation of RS images, just

as it has been, and continues to be, in the field of computer

vision. Awareness for the problem of underestimating the

generalization error, combined with a more carefully selected

sampling strategy, will be necessary to pave the way in this

direction.

In future work, we seek to compare cluster sampling with

actual multi-image evaluation to better quantify the gap be-

tween the estimated and the actual generalization error.
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