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ABSTRACT

TomoSAR (Tomographic SAR) is a technique allowing to

extend SAR imaging to the third dimension by using several

images of a scene acquired from different sensor positions.

3D point clouds extracted thanks to tomographic processing

methods are often corrupted by noise and artifacts which need

to be corrected. In this paper, we propose a simple convex op-

timization formulation that exploits the geometric constraint

that the line of sight between a sensor and a surface measure-

ment must be unobscured. We demonstrate the ability of our

method to denoise point clouds and fill holes on both synthetic

and experimental DLR E-SAR data.

Index Terms— TomoSAR, Free Space Constraint, Con-

vex Optimization

1 Introduction

Tomographic SAR (TomoSAR) allows to reconstruct reflec-

tivity profiles in elevation by using several images of a scene

acquired with different viewing angles [1]. It allows to image

volume structures such as forest canopy and separate scatter-

ers in layover areas which makes it an interesting technique

for the 3D imaging of urban areas. In this last case, 3D point

clouds may be obtained by extracting peaks from the tomo-

grams. For airborne data, artifacts may occur in these point

clouds due to uncertainty on sensor position, phase ambigui-

ties and multiple-bounce scattering effects. Moreover, decor-

relation effects corrupt the interferometric phases and result

in noisy positions of the extracted scatterers. Holes can also

appear in the data due to very low coherence areas or when

the estimated number of scatterers in wrong. For these rea-

sons, it is important to develop methods which allow to filter

or regularize the data without destroying the spatial content

such as sharp discontinuities due to the objects present in the

scene.

In this paper, we propose a framework to regularize the

point clouds with a fast algorithm based on convex optimiza-

tion. Our method is suitable for the reconstruction of surface-

like scattering areas and allows to recover sharp height jumps
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Fig. 1: Processing flow of our method from TomoSAR point

cloud input to filtered output. The full point clouds, in 3D,

can be inspected on our project website [2].

and fill holes thanks to a regularization term based on nonlin-

ear gradient penalization and the incorporation of confidence

weights on the data points. Moreover, a projection of the

points into a height map allows to improve the reconstruction

by considering geometric visibility constraints.

2 Prior Work
SAR tomography being a recent discipline, very few works

consider the processing of the corresponding 3D point clouds.

However, 3D reconstruction from InSAR data has been an ac-

tive field for several years. An approach for the joint phase

and intensity denoising of urban InSAR data considering a

Markov Random Field model had been introduced in [3]. An

extension to multi-channel InSAR data has been proposed

in [4], which assumed independent channels. In [5] a new

method allowed to exploit channel correlation. In [6], a bi-
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(a) Building and ground

plane as seen from a side-

ways looking SAR sen-

sor resulting in correct

(green circles) and noisy

(red circles) point mea-

surements.

(b) Association of the

points with height map

grid cells.

(c) Estimation of a new,

regularized height and

thus point (blue circles)

for each height map cell.

Only one height per cell

and thus view ray is al-

lowed.

(d) The height map val-

ues do not encode dis-

tances from the sensor,

but heights over ground.

Note that horizontal re-

gions result in areas of

homogeneous height.

(e) The gradients of

slopes (e.g. vertical

facades) in the height

map must exceed a

certain minimal negative

gradient (red line) or

result in overhangs.

Fig. 2: Surface representation

lateral filtering approach allowed to reduce the noise in To-

moSAR 3D points by filtering the data in the covariance ma-

trix domain. First approaches in denoising airborne tomo-

graphic SAR point clouds by primitive extraction have been

proposed in [7] and extended to the extraction of buildings in

[8]. In [9] a method to extract facades and building roofs from

high resolution satellite images has been proposed.

3 Proposed Method
Our approach uses the primal dual optimization framework

presented in [10]. Within this framework, an energy formula-

tion composed of regularization and data terms is minimized.

In the following, we will first describe our surface representa-

tion (see Sec. 3.1). Building on the properties of this represen-

tation we will describe our data and regularization terms (see

Sec. 3.2) and then show how this energy fits into the primal

dual optimization framework (see Sec. 3.3).

3.1 Surface Representation

In the following, we assume that our initial point cloud has

been first projected from the slant range to the ground range

geometry. We make the simplifying assumption, that the

radar does not penetrate the structures that we are interested

in (buildings and ground) and that each surface point is “seen”

only from the point on the flight track closest to it (instead

of being focused from an entire range). These assumptions

imply that along each “view ray” from the sensor, only one

distance measurement can be true. We enforce this by rep-

resenting the surface as a special form of height map (see

Fig. 2) which can be intuitively understood as an image of

height values as seen from the sensor. Each pixel of this

height map corresponds to a view ray from the sensor which

for airborne SAR is realized through an orthographic azimuth

projection and a perspective range projection.

The points of the input point cloud are assigned to their

corresponding height map cells to constitute the data term in

the following optimization. The heights in the height map

are stored as actual vertical heights over ground and not as

distances from the sensor. This has the nice property, that flat

surfaces have equal height, even when “seen” at an angle.

3.2 Data and Regularization Terms

The choice of surface representation already prevents multi-

ple depths per view ray making explicit enforcement of this

constraint unnecessary. In addition, we formulate and subse-

quently minimize an energy over the height map values xi,j

E(x) =
∑

i,j

ER(gradxi,j) + ED(xi,j). (1)

The data term ED is the weighted sum of the absolute dis-

tances between the estimated vertical height of each pixel xi,j

and the heights of input points pi,j,k that fall into the pixel i, j,

if any. The weights of the input points wi,j,k allow to assign

a confidence to each estimated point. In this work, we use

the pseudo-power of the peak which is a by-product of the

MUSIC algorithm employed for tomographic focusing. We

employ L1-Norm instead of L2-Norm to be more outlier re-

sistant

ED(xi,j) =
∑

k

wi,j,k |xi,j − pi,j,k| . (2)

The regularization term ER is chosen such as to penal-

ize deviations from horizontal surfaces and disallow over-

hangs. Both can be achieved by considering the gradients

of the height map gradxi,j . The gradients are computed

from the finite differences grada xi,j = xi+1,j − xi,j and

gradr xi,j = xi,j+1 − xi,j . Since azimuth and range direc-

tion in the height map have different geometric meanings

(one corresponds to an orthographic projection, the other to

a perspective projection), we consider the azimuth and range

components of the gradients independently and weight them

against each other with a weight factor β:

ER(gradxi,j) = β · |grada xi,j |a + |gradr xi,j |r (3)

In the range direction, we penalize non-zero gradients to

encourage horizontal surfaces. To allow height jumps, e.g.

for buildings and bridges, we use an L1 norm on the gradient.

Since overhanging structures shall be prevented, we penalize

any gradient smaller than a certain minimal negative value α

with infinite energy (compare Fig. 2e).

|x|r =

{
|x| if x ≥ α < 0

∞ otherwise
(4)



Algorithm 1 Adapted algorithm 1 from [10]

Input: τ, σ, θ, β, λ, coordinates of sensor track to compute α

Initialize: x0 ⇐ highest data point of cell or average height

of all points if cell empty

Initialize: x̄0 ⇐ x0

Initialize: y0 ⇐ 0

for n : [0..N ] do

yn+1 ⇐ proxσ,F∗(yn + σ Kx̄n︸︷︷︸
grad x̄n

)

xn+1 ⇐ proxτ,G(xn − τ K∗yn+1︸ ︷︷ ︸
− div yn+1

)

x̄n+1 ⇐ xn+1 + θ (xn+1 − xn)
end for

The value of α is only locally constant and has to be computed

for each pixel depending on its position in the range direction.

In the azimuth direction, we also penalize non-zero gradi-

ents. We experimented with the L1 norm as well, but found

that the Huber norm provided better results for angled build-

ing facades:

|x|a =

{
1
2 · x2 if |x| < λ

λ
(
|x| − 1

2λ
)

otherwise
(5)

3.3 Optimization

The energy in Eq. 1 can be reformulated into a form that fits

the optimization framework of [10]:

E(x) = F (Kx)︸ ︷︷ ︸∑
i,j

ER(grad xi,j)

+ G(x)︸ ︷︷ ︸∑
i,j

ED(xi,j)

(6)

In this formulation, the computation of the finite differences

of the gradients gradxi,j can be thought of as a multiplication

of the concatenated height values x with a specifically crafted

sparse matrix K (compare, e.g., with the examples in [10]).

The function F then takes on the role of the regularization

term ER while the function G represents the data term ED.

An in depth explanation of the optimization framework in

[10] is beyond the scope of this paper and we refer interested

readers to the original paper. However, in order to apply the

optimization framework, as sketched in Alg. 1, solutions for

the following three terms are needed: a) the adjunct K∗ of K,

b) the resolvent operator proxσ,F∗ , and c) the resolvent oper-

ator proxτ,G. Here, as F ∗ we denote the convex conjugate of

F . The resolvent operator for a scale ρ and a function H(x)
is defined as:

proxρ,H(x) = argmin
x̃

(
|x̃− x|

2

2ρ
+H(x̃)

)
(7)

Due to space limitations, we simply state the final for-

mulas here and refer to our project website [2] for the full

derivations. The adjunct K∗ of K is the negative divergence

operator ((K∗y)i,j = − div yi,j). The resolvent operators

can be computed pixel-wise and, for the regularization, can

be split into its azimuth and range parts.

The pixel-wise azimuth part proxσ,F∗

a
is the default resol-

vent operator for the Huber norm (see, e.g., [10]), except for

the balancing factor β. The pixel-wise range part resolves to

a simple per pixel case selection:

proxσ,F∗

r
(yi,j) =





yi,j if |yi,j | ≤ 1

1 if yi,j > 1

−1 if yi,j < −1, yi,j − ασ ≥ −1

yi,j − ασ if yi,j < −1, yi,j − ασ < −1

(8)

The pixel-wise resolvent operator for the data term

proxτ,G(xi,j) is slightly more complicated and has no closed

form solution. We compute the minimum for each height

interval between sorted data points pi,j,k and pi,j,k+1 as well

as for the height of each data point pi,j,k individually and

then pick the lowest minimum. For details, see [2].

Despite the complexity of the involved math, the resulting

algorithm is surprisingly simple. Since most operations are

pixel wise, it is easy to exploit multi-core CPU or even GPU

architectures.

4 Experiments

4.1 Synthetic data

To evaluate the method we have simulated a scene composed

of a simple 3D object representing a building. The 3D model

has been discretized assuming rectilinear SAR trajectories

and a stack of 6 images has been generated according to a

layover model for distributed targets following the procedure

established in [6]. In this work, we simulate baseline decor-

relation, resulting in noisy heights. To assess the robustness

of our algorithm against errors in the estimated number of

scatterers, we have allowed randomness in the model order.

To do so, 10% of pixels were randomly picked and their

model order was replaced by a uniformly distributed random

number. Next, the MUSIC algorithm has been applied to each

pixel with the previously generated model order to retrieve

the point cloud. Then, we have applied our reconstruction

method. Fig. 3 shows the ground truth, simulated and pro-

cessed point clouds. It can be noted that the contamination

of the data results in wrongly estimated points besides the

decorrelation noise. It may be observed that our method

allows to successfully reconstruct the object and preserve

the facade. Moreover, the method allows to retrieve a high

point density in the ground part just in front of the facade.

This part was almost empty in the simulated image due to

erroneous tomographic estimations in the layover area. Fur-

thermore, our algorithm shows robustness against a wrongly

estimated number of scatterers, which is an important point

when considering experimental data.

4.2 Experimental E-SAR data

We have applied the method to a point cloud obtained by to-

mographic processing of the experimentally acquired L-band



(a) Ground truth (b) Input points (c) Processed points

Fig. 3: Results on simulated data.

Fig. 4: Results on the point cloud of the E-SAR Oberpfaffen-

hofen dataset over 3 cropped areas. Original noisy points (left

column) and points after applying our method (right column).

DLR E-SAR dataset of the Oberpfaffenhofen (1998) scene.

The MUSIC method has been used for TomoSAR focusing,

up to three scatterers. Fig. 4 compares the original noisy

points with the ones after applying our new method. It may be

observed that our method allows to smooth the flat areas while

preserving the sharp height discontinuities between ground

parts and building roofs. Moreover, thanks to the spatial reg-

ularization term and the confidence based weights, holes that

appeared in the original data have been filled. This even holds

for buildings facades which are facing the sensor, even if they

are not appearing in the noisy input data.

5 Conclusion and Future Work
In this paper we have introduced a new method to regularize

point clouds from TomoSAR data. The approach relies on

an energy formulation which incorporates spatial regulariza-

tion by imposing a gradient based prior on the reconstructed

points. Moreover, by defining confidence weights on the es-

timated points, the data fidelity terms allows to fill holes in

the point cloud and restore sharp height discontinuities. By

enforcing visibility constraints, it allows the completion of fa-

cades even if few points are present and is therefore suitable

for surface reconstruction in urban areas. Thanks to the use of

a recent convex optimization framework, the algorithm is sim-

ple to implement, fast and highly parallelizable. The method

has some limitations, namely its tendency to over-smooth not

well supported vertical structures as the prior prefers horizon-

tal, flat surfaces. The utilized projection from the sensor’s

“point of view” also makes extensions to multi-aspect scenar-

ios non obvious.

In future works we will provide quantitative evaluation

with more complex simulated scenes. We will also compare

the method to other approaches.
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