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Abstract. Benchmark datasets are the foundation of experimental eval-
uation in almost all vision problems. In the context of 3D recon struction
these datasets are rather di�cult to produce. The �eld is mainly divided
into datasets created from real photos with di�cult experimental setups
and simple synthetic datasets which are easy to produce, but lack many
of the real world characteristics. In this work, we seek to �nd a mid dle
ground by introducing a framework for the synthetic creation of reali stic
datasets and their ground truths. We show the bene�ts of such a p urely
synthetic approach over real world datasets and discuss its limitations.

1 Introduction and Related Work

The reconstruction of digital 3D models from images includes various tasks rang-
ing from camera calibration, over the determination of camera positions(struc-
ture from motion) and dense reconstruction, to surface generation and interpre-
tation (e.g. segmentation). Over the last years, a still rising number of algorithms
have been proposed that are able to obtain high-quality 3D reconstructions in
several application scenarios, including those where other approachesare not
easily applicable. The state of the art of this �eld is still improvin g rapidly. An
overview about recent advances in structure from motion methods can be found
in [1], while [2,3,4] o�er reviews of multi-view stereo algorithms.

The need to objectively compare such algorithms and to investigate their
intrinsic properties has led to the proposal of many benchmark datasets, which
provide reference data (i.e. measured by other sensors) or ground truth (based on
synthetic models). Both types of datasets have complementary bene�ts and lim-
itations. Datasets that are based on real measurements have the advantage that
all the e�ects that can occur during data acquisition are (at least potentially)
included as they actually happen during the acquisition. This property of real
datasets is of course only theoretical, since the concrete, practical experimental
setup is limiting the e�ects that can be covered. These datasets mostly contain
a few example and often simpli�ed scenarios, where images are obtained under
�xed conditions (e.g. same lighting, same camera, a certain baseline, etc.). Fur-
thermore, these datasets cannot provide ground truth but only reference data,
which is acquired by a sensor (mostly structured light or laser scanning) that is
assumed to have an accuracy superior to the system under investigation.
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Fig. 1. We present a framework for the synthetic generation of realistic 3D re construc-
tion datasets with ground truth data which allows the evaluati on of 3D reconstruction
methods in fully controlled and possibly non-standard applica tion scenarios.

In [5] a database of images with reference data based on structured light is
provided for the computation of a dense depth map from a pair of images. The
last extension of this database provides 33 datasets of high-resolution images and
subpixel-accurate reference data [6]. Several multi-view stereo reconstruction al-
gorithms are evaluated in [3] on the basis of images and laser scans of a plaster
reproduction of two objects. A spherical gantry is used to move the camera to
prede�ned positions on a hemisphere. To remove shadows casted by the gantry
the hemisphere had to be covered two times with di�erent con�gurations leading
to 790 views in total. The images are corrected for radial distortion. Calibration
accuracy is in the order of a pixel corresponding to roughly 0:25mm on the ob-
ject. Since the measurement of completeness and correctness of theestimated
mesh with respect to the reference mesh is problematic if either contains holes,
a hole-�lled version of the reference mesh is used and estimated points close
to hole-�lled regions are discarded. In [7] a robotic arm is used to position the
camera and a structured light sensor. Camera positions are not known due to
low position accuracy of the robot (despite high repeatability) but are estimated
based on a calibration object that is included in the scene. One of the probably
best known benchmarks is introduced in [8] and provides six di�erent datasets
with 8-30 images mainly showing di�erent architectural objects (such as facades,
fountains, building entrances). The images have been corrected forradial distor-
tion and reference data is provided for camera calibration and depth measured
by a laser scanner with an accuracy of less than 1 cm. The authors stress the role
of reference data within a benchmark and report the variance of the laser scans.
In [9] an autonomous driving platform is used to compile challenging real-world
benchmarks for stereo, optical 
ow, visual odometry, 3D object detection, and
3D tracking. The data consists of nearly 200 scenes of a static environmentand
was extended by another 400 scenes in 2015 [10]. Reference data is produced by
a laser scanner and GPS localization. Their results illustrate the disadvantage
of data captured in controlled environments by reporting below average perfor-
mance of methods that achieve high rankings on other established benchmarks.
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Despite the advantages of real datasets for benchmarking, the examples above
illustrate their downsides: The requirements on hardware as wellas software are
tremendous and any evaluation is limited to the objects and data acquisition
circumstances covered by a speci�c benchmark as well as to methods which are
at least an order of magnitude less accurate than the provided referencedata.

Synthetic benchmarks are complementary to real data: Since image acquisi-
tion only consists of rendering images on a computer, it is fast, cheap, and allows
full control of scene content and properties (e.g. lighting) as well as changing
camera parameters or image characteristics. Since only software and data are
needed, the whole process of image production can be shared (instead ofonly
image and reference data), which increases the repeatability of the experiment
by others. Instead of reference data with measurement errors by itself, the actual
ground truth is known. The disadvantage is that it is often unclear how realistic
the produced data is and whether the evaluated methods react to realdata in
the same way as to synthetic data. Furthermore, the creation of the synthetic
3D models is often complex and requires (besides a good understanding of the
properties of cameras) a certain artistic skill. That is why often either simpli�ed
3D scenes are used or models that had been created for other purposes.

One of the more realistic synthetic datasets (\Tsukuba") is proposed in
[11,12]. It provides 1800 stereo image pairs of an o�ce scene under four di�er-
ent illuminations along with the corresponding true disparity maps. The scene
has been created and rendered photo-realistically by use of Pixologic ZBrush
and Autodesk Maya. A synthetic dataset for benchmarking optical 
ow algo-
rithms is proposed in [13]. It is based on the open source 3D animated short �lm
\ Sintel" and rendered with Blender using its internal ray tracer. The ground
truth includes camera intrinsics and extrinsics as well as the true depth for each
pixel. The authors prepare several variations of this dataset for di�erent tasks
including depth, camera motion, stereo, and disparity estimation.

A common disadvantage of such benchmarks is that they are restricted to
only one scene, although this scene is composed of complex objects/subscenes
and can be rendered under various conditions. While theTsukuba dataset is
designed for benchmarking computer vision methods, theSintel dataset is orig-
inally intended to be visually pleasing. Many parts of the scene that seem to
contain 3D structures are actually 
at. The visible structure exist s only in their
texture and normal maps but is not existent in the actual 3D mesh (and con-
sequently also not in the ground truth depth maps). The image synthesis stops
at the image formation process of a pinhole camera, while other e�ects of a real
camera (such as tone mapping, noise, motion blur) are neglected or tweakedfor
artistic purposes.

This paper proposes an evaluation pipeline (see Figure 1) that stands between
real benchmarks on the one hand with all the challenges of real data but high
costs for reference data of limited accuracy and on the other hand synthetic
datasets that provide accurate ground truth but only simpli�ed 3D mode ls and
image formation. The proposed framework uses realistically rendered images (as
opposed to artistic/stylized images as inSintel), where \realistic" means not only
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photo-realistic in the sense that images look real but also in a more \physical"
sense. We use Blender with path tracing instead of simple ray tracing to be able
to simulate more complex light-surface interactions. Many real world e�ects of
image acquisition (such as motion blur and noise) are simulated during image
rendering or post-processing. All camera parameters are known as wellas the
3D structure of the scene.

Our ultimate goal is not to replace but complement benchmarks based on real
data by novel datasets i.e. scenes that have been rendered with varying proper-
ties. This not only allows to evaluate and compare di�erent methods, but also to
investigate the in
uence of camera or scene properties on the reconstruction, to
prototype, design, and test experiments before realizing them in the real world,
and to generate training data for learning-based approaches. These experiments
open the possibility to analyze when and why methods fail and consequently to
suggest potentials for future work. We provide the means to produce datasets in
addition to the datasets introduced in Section 3.

The contributions of this work are four-fold: We provide 1) an automatic syn-
thesis framework with full control about the scene and the image formation, 2)
several datasets with a variety of challenging characteristics, 3) results of a few
example experiments illustrating the bene�ts of synthetic but realistic bench-
marks, and 4) a 
exible and open-source C++ implementation of the proposed
framework. Our datasets and evaluation framework are publicly available [14]
and open to the general community.

It should be stressed, that the focus of this paper is the framework itself,
i.e. explaining its general work
ow, discussing its potentials and limitations, as
well as illustrating possible applications and experiments. The experiments in
Section 3 serve the only purpose to illustrate the general potential ofSyB3R and
are not meant as a thorough study of corresponding methods. The publication
of the methodology and software of SyB3R in its current state will help tosteer
future work into directions most needed by the scienti�c community and to
include scene and image characteristics, error measurements, and datasets that
are speci�cally designed to answer currently open questions.

2 SyB3R

The image formation process in digital cameras is more complicated than a sim-
ple projection plus digitization and quantization. After a complicated setup of
lens elements the light hits the image sensor. The measurements of the image
sensor are subject to noise, some from the sensor itself, and some from the ran-
dom but quantized number of photons that comprise a certain amount of light.
Each sensor element (pixel) measures only one color channel which is enforced
by color �lters that block photons of other wavelengths. This has two crucial
consequences: First, color information has to be locally shared and interpolated.
Second, a change of the color model has to be performed, since the color �lters
are not necessarily focused at the RGB primary wavelengths of the sRGB model.
The mapping of radiometric intensities to sRGB values is nonlinear and cam-
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Fig. 2. Pipeline overview.

era dependent. Finally, the JPG compression adds additional image artifacts.
A more in-depth discussion on camera models is beyond the scope of this pa-
per but can e.g. be found in [15,16]. Scene and camera properties lead to many
e�ects such as specularity and re
ections, image noise, blur causedby camera
and object motion, chromatic aberrations, radial distortions, depth of �el d, etc.
which are often ignored or insu�ciently modelled in other syntheti c datasets.

This section presents the framework of our Synthetic Benchmark for 3DRe-
construction (SyB3R), which is supposed to be a step towards closing the gap
between existing real and synthetic datasets. In its current state, it is not a tra-
ditional benchmark per se in the sense that we provide a wide range of datasets
accompanied with ground truth and perform a thorough evaluation of exist-
ing methods. Instead, SyB3R is the implementation of a modular framework to
create such datasets. We strive for simulating the above mentioned real-world
e�ects as realistically as possible while remaining 
exible for future improve-
ments as well as easy to use. To this end, we have to limit the image synthesis
to a simpli�ed model that does not encompass the entire physical process. We
split the image generation into two parts: The actual rendering that projects
the scene into a 2D image (Section 2.1) and a post-processing that implements
remaining e�ects in image space (Section 2.2). An overview of SyB3R is shown
in Figure 2, while the following subsections explain the individual steps in more
detail. All steps are implemented in a highly modular manner which allows to
toggle individual modules on/o�, change their relative order, or exchange them
with di�erent versions to create images optimized for speci�c purposes.

2.1 Image Rendering

Similar to [13] we use Blender to compose the virtual scene. The primary bene�t
of Blender over other alternatives (such as Autodesk Maya used by [11,12]) is
that Blender is open source and can be acquired and used free of charge. This is of
vital importance since we wish to release not only the �nal datasets, but also the
software and tools that created them. Blender has an extensive animationand
scripting system, allowing virtually every property to be animat ed or controlled
via Python scripts. This allows our framework to use small scripts which control
the rendering process and perform automated modi�cations of key parameters of
the scene. Another bene�t is the infrastructure and community that comes with
such a popular tool providing for example high-quality models underCreative
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Fig. 3. Example images from our synthetic datasets. Top: Rendered color images. Bot-
tom: Ground truth depth.

Commons licenses (e.g. at [17]). There exist even render farms for Blender, where
rendering time can be rented if su�cient compute power is locally unavailable.

For the image rendering we useCycles, a Monte-Carlo path tracer that accu-
rately simulates the propagation of light through the scene including refraction,
re
ection, and caustics. Cyclesis distributed as part of Blender and has backends
for CPUs and Cuda-GPUs. The produced images are stored as HDR images to
retain the full 
oating-point precision of all intensity values for fur ther process-
ing. All scene properties (e.g. lighting and surface texture), object motion and
large camera motion, as well as camera properties such as focal length, principal
point, resolution, depth of �eld (DoF), and �eld of view are handled dur ing the
rendering process byCyclesunless they can be implemented as a post-processing
step. For example, DoF is not added as a post-processing e�ect but is imple-
mented in Cyclesby o�setting the origin of the view rays. The view rays don't
originate from a single focal point but from an area/volume that is shaped by
the aperture (bokeh) and, if enabled, camera motion.

Even though cameras usually do not capture directly the three primarycolors
of the sRGB model, we render those radiometric RGB intensities since it allows
the reuse of community models and textures.

2.2 Image Post-Processing

While Cycles provides some interesting image formation e�ects such as DoF,
other aspects of the image formation process have to be realized as post-processing
steps. We implement the image post-processing as a chain of individual modules
(see Figure 4) that can be exchanged and combined in di�erent ways.

Rot. motion
blur

Hdr
images

JPG
images

Radial
distortion

Auto
exposure

Sensor
noise

Tone-
mapping

Fig. 4. Overview of the provided post-processing chain.
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Camera Rotation Motion Blur Since object motion blur and depth of �eld
are a�ected by lighting and the 3D structure of the scene, we apply them during
the rendering process. For short exposure times, however, camera motion blur
stems from small rotations of the camera. This can be implemented as a post-
processing e�ect which allows experimentation with di�erent exposure times
without having to rerender the images.

Camera motion blur is applied in image space on the basis of the HDR
images. Instead of using hand-crafted blurring kernels, we took images of bright
dots and measured the length of the glow trails in these images. The �nal blur
kernel is a linear blur with random orientation, where the length of the blur is
drawn from a gamma distribution that was �tted to the measured image blur
(see Figure 3 in the supplemental material).

Radial Distortion and Chromatic Aberration To simulate the e�ects of
radial distortion, we provide a post-processing step that resamples the image
according to the commonly employed polynomial distortion model

x = c + d �
�

1 + jdj2 � � 2 + jdj3 � � 3 + jdj4 � � 4

�
with d = y � c (1)

where x and y are the source and destination pixel coordinates, respectively,
c is the projection center, and � f 2;3;4g are polynomial coe�cients that can be
estimated by SFM as part of the internal calibration. Chromatic aberration is
simulated by using separate sets of� f 2;3;4g coe�cients for each color channel.

Automatic Exposure Control Most cameras automatically adapt the expo-
sure of the sensor to make full use of the limited numerical range of the�nal
image. We implement this by scaling the color channels based on the average
brightness of the central image region. While in reality the exposure control
has an e�ect on exposure time, aperture size, and arti�cial ampli�cation , we
currently do not adapt the strength of motion blur, DoF, or sensor noise.

Sensor Noise In reality the camera signal is corrupted with noise at the very
beginning of the image formation process, but gets transformed by subsequent
processing steps (such as color interpolation due to the Bayer pattern and chang-
ing the color model). The result is intensity-dependent noise,that is correlated
spatially and across color channels. The corresponding relationship between sig-
nal and noise is highly complex and very di�erent from the often assumediid
additive Gaussian noise [15]. This is illustrated in Figure 5, which shows real
noise (on the left) in an image obtained with ISO 1600 as well as synthetic
Gaussian iid noise (on the right), which is added to an image where real noise
was reduced beforehand by averaging 30 pictures. The Gaussian noise hasthe
same variance as noise that was found in test images of a medium gray tone.

There are two principle ways to derive more realistic noise: Modeling it
through a full reproduction of the image formation process including demo-
saicing and color matrix multiplication or as a post-processing step by�tting
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Fig. 5. Two di�erent details of the image at the left taken with ISO 1600 . From left
to right: Original image; synthetic noise: our approach; synth etic noise: iid additive
Gaussian with the noise variance equal to that of an ISO 1600 image of a 50% gray
tone.

the statistics of the rendered image to those of a real camera. The �rst approach
has the advantage of providing better control about potential e�ects during the
image formation process. However, many educated guesses concerning the choice
of demosaicing �lter and absence or nature of camera-internal denoising �lters
have to be made [16]. The latter approach, while being considerably simpler,
allows to �t the image data closer to that of a speci�c real camera. The current
version of SyB3R follows the second approach, while the �rst method hasbeen
deferred to future work as an additional module.

We acquired several test images of various colors and intensities with aCanon
EOS 400D. We model the variance� r;g;b in the three color channels in lin-
ear space as a function of the color intensitiesrgb in linear space such that
� r;g;b = A � rgb + b. We assume a linear relationship between variance and in-
tensity via A , since most of the image noise is shot noise from the Poisson
distributed photon count. Intensity-independent noise is represented by the con-
stant o�set b. The matrix A and the vector b are �tted to the noise observed in
the test images. The spatial correlation of the noise is modeled by blurring it by
a Gaussian kernel with a standard deviation of 0:75 pixels which is normalized
to retain the noise energy (i.e. the squared kernel values sum to one). The middle
of Figure 5 shows the resulting synthetic noise on the same input image as for
the iid Gaussian noise. Although minor discrepancies remain between the real
noise and our synthetic noise, it is clearly visible, that the similarity is much
higher than for the iid Gaussian noise.

Tonemapping and Compression Instead of using prede�ned operators, the
tone mapping is modeled after actual measurements. We measured the response
curves (see Figure 2 within the supplemental material) of a Canon EOS400D
as proposed in [18] which are used as a nonlinear mapping from radiometric
intensities to 8-bit sRGB values.

The last processing step is the JPG compression of the obtained LDR images.
The top of Figure 3 shows some examples.
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2.3 Ground Truth Generation

The extrinsic camera matrix is given by Blender as the world matrix of the cam-
era object. The intrinsic camera matrix is computed using focal length, sensor
size, principal point, and image size as given by Blender. The f-number of the
camera is computed from focal length and aperture size but is only usedfor ref-
erence in the current work. All of these parameters are automatically extracted
via a Python script and stored in an XML �le.

The depth values (as distance to the focal point) are returned fromCyclesin
an additional \Z-bu�er" pass in which motion blur and DoF are disabled. The
second row of Figure 3 shows some examples. Finally, a 3D mask of the object
of interest is provided.

2.4 3D Reconstruction

A typical pipeline for 3D reconstruction from images consists of multiple parts
such as calibration (to determine internal camera parameters), structure from
motion (SfM, to determine external camera parameters), multi-view stereo (MVS,
to obtain densely distributed samples on the surface), and eventually meshing
(to determine the surface). Depending on the focus of their work,researchers
evaluate either the whole pipeline from the start up to a certain point, or they
concentrate on individual components. Currently the proposed benchmark eval-
uates SfM (i.e. camera position) and dense reconstruction. It allowsa) to run
SfM only and evaluate the calibration, b) to run MVS with the ground truth
calibration only to evaluate the dense reconstruction, and c) to run both to
evaluate the in
uence of calibration errors by SfM.

2.5 Evaluation

To evaluate SfM, we transform the estimated camera positions into thecoor-
dinate system of the ground truth via a least squares Helmert transformation.
The Euclidean distance between estimated and ground truth camera positions is
computed as the error metric and is expressed in meters by supplying a metric
scale (set inside Blender).

MVS methods are evaluated on the basis of the dense point clouds. The
ground truth point cloud is synthesized (similar to laser/structur ed light scans
in real datasets) by projecting each pixel back into 3D space using the ground
truth camera calibration and depth maps. If MVS was not run with the ground
truth camera positions but the estimates of SfM, the estimated point cloud is
transformed into the ground truth coordinate system by the Helmert t ransfor-
mation based on the camera correspondences.

Our performance metrics are similar to those applied by [3,7] on real datasets:
The precision is the average distance of each estimated point to the closest
ground truth point, while the completenessis the average distance of each ground
truth point to the closest estimated point. Usually our datasets contain one ob-
ject of interest and background. A reconstruction should neither be penalized
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for providing a good estimation of the object while ignoring the background
(completeness), nor favored for providing a good reconstruction of the back-
ground while being less accurate on the object (precision). Based on the \object
of interest"-mask rendered in Cycles, we label the ground truth points as fore-
ground or background. The evaluation of completeness is then restrictedto the
foreground points. For the precision, only those estimated points are considered
whose closest ground truth point is labeled as foreground.

Additionally we create ply-�les with corresponding vertex qualiti es to visually
represent completeness and precision. This provides a visual summary as well as
information about the spatial distribution of errors over the point cloud .

3 Experiments

The focus of this paper is the proposal of SyB3R to synthesize images with
their ground truth as well as illustrating its potential to evaluate Sf M and MVS
pipelines. An exhaustive comparison of modern 3D reconstruction methods as
well as an in-depth study of the in
uence of all parameters are therefore both
beyond the scope of this paper. Nevertheless, we provide several analysis exam-
ples on isolated parameters using VSFM [1,19,20] and a custom SfM pipeline
as well as PMVS2 [21]. The following subsections showcase a few experiments,
which would have been di�cult to achieve with real benchmarks such as shift
of principal point, change of surface texture, and di�erent signal-to-noise ratios.
Two more example experiments illustrating the in
uence of DoF and motion
blur can be found in the supplemental material.

The datasets have been selected to contain objects being published with com-
patible licenses. The di�erent objects have di�erent surface properties such as
sharp as well as smooth features, complex surface structures, strongconcavities,
and strongly as well as weakly textured regions. All images are rendered with
2000� 1500 pixel resolution. All datasets are small in metric scale to showcase
the in
uence of depth of �eld. A case where it would have been impossible to
create real reference data is shown on the right side of Figure 3 and described
in the supplemental material.

3.1 General Performance Evaluation

This section illustrates an example of a general performance evaluation using
SyB3R based on theToad dataset [22]. An example image with its depth map
is shown on the left side of Figure 3. The object has strong texture buta rather
simple geometry with small depth complexity. Nevertheless, the bumps of the
skin are modeled in 3D and not only simulated by texture and normal maps.
A few parts of the surface (especially on the eyes) show specularityand are
thus challenging for most reconstruction methods. Camera pose and position are
estimated by VSFM, while the dense reconstruction is carried out with PMVS2.

The average positioning error of the cameras is 41:6µm. The obtained values
for completeness and precision are 118µm and 144µm, respectively. For refer-
ence, the toad is assumed to be about 11 cm long in its depicted pose. Figure 6
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Fig. 6. Qualitative results for the Toad
dataset after being processed by VSFM
and PMVS2. Distances are color coded
from zero (red) to 0.5mm (blue). Left: Pre-
cision (distance to the closest ground truth
point). Right: Completeness (distance to
the closest estimated point).
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Fig. 7. Camera position error for narrow
FoV (80 mm lens on 22:5 mm sensor) and
wide FoV (25 mm lens on 22:5 mm sensor).
Notice the signi�cantly increased error for
the narrow FoV.

shows which points contributed to these errors by color-coding the distance of
each point from zero (red) to 0:5 mm (blue). It should be noted, that regions with
high specularity (e.g. eyes, �ngers) have big errors or are completely missing and
thus appear blue in the precision and completeness images, respectively.

3.2 Focal Length

In the following experiment we used a self-made 3D model depicting a geological
hand sample on a turntable (in the spirit of [23]) shown in the second column of
Figure 3. The lighting is �xed to the camera, i.e. it moves with respect to the rock.
A common empirical observation is that SfM usually bene�ts from a wide � eld of
view (FoV). We rendered two datasets by using cameras with two di�erent focal
lengths. The cameras are placed at di�erent distances to the object toequalize
the object coverage and overlap of their images. Since SfM contains random
elements (e.g. RANSAC), we run VSFM 50 times. The histograms in Figure 7
show the resulting average camera errors. Indeed, the average positioning error
increased from 0:0575 mm for a wide FoV to 0:1257 mm for a narrow FoV.

Note, that the dense reconstruction (PMVS2) by itself is virtually un a�ected
by the change in focal length. When run with the ground truth calibrati on data,
we observe no signi�cant change in precision (Narrow: 55:6µm; Wide: 56:1µm)
nor in completeness (Narrow: 110µm; Wide: 115µm).

3.3 Principal Point

This experiment as well as those in the following Section 3.4 are carried out
based on a self-composed dataset that consists of multiple community models:
A skull [24], a helmet [25], and stone pebbles in a wooden box [26]. An example
image is shown in the fourth column of Figure 3. This dataset is inspiredfrom
the reconstruction of fossils and skeletons in natural history museums. These
situations are often prone to insu�cient lighting and weak texture.
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This experiment investigates the in
uence of estimating the principal point
on the position accuracy of SfM. We measured the principal point of a Canon
EOS 400D to be o�set from the image center by about 39 pixels (1% of the
image width). In [8] an o�set of about 23 pixels (0:74% of width) is reported,
while [7] states an o�set of about 57 pixels (3:56% of width) for the left camera
and about 25 pixels (1:56% of width) for the right camera. Although a shift of
1% of the image width seems realistic, several SfM pipelines (e.g. VSFM) do not
allow an estimation of the principal point.

We rendered datasets with no shift, a shift of 16:4 pixels (0:82% of width), and
21:3 pixels (1:1% of width). The results in Table 1 show that the impact is severe,
especially considering that only camera position and not rotation is evaluated:
The positioning error increased from 0:093 mm to 0:527 mm for VSFM but stayed
nearly constant for the custom pipeline which does estimate the principal point.

Table 1. Camera position errors for shifts
in the principal point. For reference, the im-
pact of the calibration errors on the pre-
cision of the dense reconstruction is also
shown. All numbers in µm.

Shift amount 0% 0:82% 1:1%
SfM position errors
VSFM 93 405 527
In house SfM 160 183 171
SfM + MVS precision
VSFM + PMVS2 259 383 378
In house SfM + PMVS2 242 241 244

Table 2. Precision and completeness
for the full amount and quarter amount
of texture and various noise amounts.
All numbers in µm.

Texture 100% 25%
Error prec. compl. prec. compl.
No noise 171 525 211 751
JPG 80 189 551 270 771
ISO 1600 212 751 398 14741

3.4 Surface Texture vs. JPG Compression or Noise

MVS methods require surface texture for an accurate reconstruction.This tex-
ture, however, can be weak or hidden by noise or compression artifacts [27]. In
the following experiment, we modify the amount of texture on the skull and
pitch the 100% texture and the 25% texture against JPG compression artifacts
at 80% quality as well as synthetic ISO 1600 sensor noise. The impact of JPG
compression can be seen visually in the left half of Figure 8. The distances are
again color coded with blue corresponding to 1mm. The right half of Figure 8
shows the impact of ISO 1600 sensor noise with the same color coding. The
average precision and completeness for each case is compiled into Table2. It
is noteworthy, that weak texture of its own is not truly a problem. Rath er the
relation between texture and noise, the \signal-to-noise-ratio", dictates the pre-
cision and completeness of the reconstruction [27]. The reduction of the texture
to one quarter of its original strength results in a minor reduction of quality.
Only in combination with strong compression or sensor noise does the quality
decrease, for the latter quite signi�cantly.
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Fig. 8. Reduction of texture on a surface. Top row: Full texture. Bottom: 2 5% texture.
From left to right: Image at 100% JPG quality, Precision at 100% an d 80% JPG
quality, respectively, Precision without noise, Precision wi th synthetic ISO 1600 noise,
Completeness with synthetic ISO 1600 noise.

4 Conclusion and Future Work

This paper proposes SyB3R as a framework for the synthetic generation of re-
alistic benchmarks for 3D reconstruction from images. We compose scenesfrom
publicly available photo-realistic models and extend them with realistic e�ects of
the image formation process of digital cameras. This approach not only allows to
retrieve actual ground truth data. It also gives full control of all scene properties,
including, but not restricted to, internal and external camera parameters, the
light situation, object motion, and surface properties. Instead of only releasing a
limited set of image sequences, we additionally make the whole processing chain
publicly available. This enables researchers to quickly produce and prototype
datasets for a wide range of applications. These datasets can include scenes with
varying intrinsic properties such as surface texture (see Figure8) or datasets for
non-standard computer vision problems (see right side of Figure 3) for which
an actual experimental setup would be too complicated or should only be at-
tempted after an initial (synthetic) prototyping phase. Additionall y to data and
ground truth generation, the framework provides an automatic qualitative and
quantitative evaluation in a modular fashion to promote the direct incl usion into
the test benches of research projects.

As common image acquisition artifacts, we leverage Blender and Cycle's abil-
ities to model re
ective and refractive surfaces, object motion blur, as well as
depth of �eld and implement camera motion blur, radial distortion, chr omatic
aberrations, auto exposure, camera sensor noise, nonlinear tone mapping,and
JPG compression as post processing. Highly situation and camera dependent
e�ects such as camera motion blur, sensor noise, and tone mapping are mod-
eled after empirical measurements. The corresponding tools are released as well,
which allows to �t these models to new cameras. The automatic evaluation
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includes qualitative (visualization) as well as quantitative (positi on errors, pre-
cision, completeness) measurements.

The image synthesis is cheap compared to the creation of reference datafor
real datasets, but comes with a high computational load. Since a Monte-Carlo
path tracer is used, a decrease of the inherent sampling noise must be paid for
with quadratically increased rendering time. Render times can bemultiple hours
per image, depending on scene/material complexity and image resolution.How-
ever, distributing the rendering tasks to multiple computers is easily possible.
Another point is that datasets have to be selected with a certain care.Mod-
els where �ne geometry is only simulated by perturbing local surface normals
would give bad results for reconstruction methods that use shading cues. An-
other common artistic trick are repeating textures, which will rise issues for most
methods. The resolution of meshes and textures of all digital models is limited,
which results in an upper limit for reasonable image sizes. Despite the advan-
tages and potentials of synthetic data, real world datasets are still necessary to
investigate which e�ects should be included into the synthesisand to con�rm
the �ndings based on synthetic benchmarks. However, for individualparameter
tests and specialized, non-standard use-cases we believe synthetic datasets to be
a valuable complement to real world datasets.

Future versions should extend the image formation in three major points:
First, motion blur and sensor noise should be modelled as dependent onthe
exposure. Second, modelling the complete image formation process would allow
a more sophisticated noise model. Third, depth of �eld can be modelled in image
space with only minor quality degradation. This would lead to a smaller com-
putational load since images do not have to be re-rendered. A next version of
SyB3R will include more error measures capturing di�erent aspectsof the qual-
ity of 3D reconstructions. It is in particular possible to compute precision and
completeness metrics on the underlying mesh exported from blender. These met-
rics might behave di�erently, since the ground truth / referenc e point cloud in
our current approach as well as in laser / structured light scanning method have
an implicit prioritization. Despite the focus of this work on benchmarking path
estimation and dense reconstruction, the applications of SyB3R are by nomeans
limited to those. Instead, it can be easily extended to other application areas
such as keypoint matching, surface reconstruction, and optical 
ow estimation.
Last but not least, SyB3R will be used to create more benchmark datasets and
to perform a thorough investigation of modern 3D reconstruction pipelines and
their dependency on scene and camera properties. This evaluation will hopefully
facilitate innovation by focusing attention on open challenges and modules that
still contain large potential for improvement.
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