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ABSTRACT:

Multi-view stereo has been shown to be a viable tool for the creation of realistic 3D city models. Nevertheless, it still states significant

challenges since it results in dense, but noisy and incomplete point clouds when applied to aerial images. 3D city modelling usually

requires a different representation of the 3D scene than these point clouds. This paper applies a fully-automatic pipeline to generate a

simplified mesh from a given dense point cloud. The mesh provides a certain level of abstraction as it only consists of relatively large

planar and textured surfaces. Thus, it is possible to remove noise, outlier, as well as clutter, while maintaining a high level of accuracy.

1. INTRODUCTION

The areas of photogrammetry and image-based 3D reconstruction

have matured over the last decade. Nowadays, powerful methods

and tools are at general disposal which allow to obtain impres-

sive reconstructions of small-scale objects as well as of large-

scale scenes. Despite the ongoing research on Structure-from-

Motion (SfM) and Multi-View Stereo (MVS), more and more

work is concerned with the further processing and analysis of the

resulting point clouds. Typical examples include noise reduction,

outlier removal, increasing the completeness by the use of prior

knowledge, segmentation, semantic annotation, and simplifica-

tion. Many applications that make use of digital 3D models do

neither require nor desire raw point clouds or surface meshes with

a large number of polygons. Instead, simple representations are

needed that nonetheless give a realistic impression and provide a

certain level of accuracy despite being a simplified and abstract

version of the underlying 3D geometry.

One such application is the creation of realistic 3D models of ur-

ban environments, which are used for urban planning, city growth

management, virtual tourist guides, etc. In particular web-based

applications such as Google Earth led to an increased need of

methods to create realistic 3D models of whole cities. Image-

based 3D reconstruction has been favourably used due to its rel-

atively low cost and ease of use. Furthermore, it is able to pro-

vide dense, accurate, and textured 3D models. The applicational

circumstances of such methods request procedures that are fully-

automatic as well as efficient. Any kind of human interaction

or the need of extensive processing would render the repetitive

creation of large models infeasible. Furthermore, corresponding

methods need to be flexible. Building shapes and other urban

structures vary considerably within a single city and among dif-

ferent cities of the world. Methods that rely on strong assump-

tions about e.g. rectangular footprints will inevitably fail to de-

liver accurate results. On the other hand, such methods need to be

robust. MVS methods for 3D city modelling have to face weakly

textured areas, strong occlusions, repetitive structures, reflective

surfaces (e.g. glass elements on building facades), shadows and

other non-stationary processes (e.g. moving objects), as well as

strongly skewed views of certain scene elements (i.e. building

facades). Consequently, the resulting point clouds are of lower

quality than small-scale 3D reconstructions of near-range objects.
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Figure 1. This paper applies a fully-automatic pipeline to obtain

a simplified mesh from a given dense point cloud. The data

shown in the figure is part of the evaluation dataset discussed in

Section 4.

They are noisy and contain partially unknown or distorted infor-

mation. Nevertheless, visually pleasing and physically plausible

models should be obtained in all cases despite input data of vary-

ing quality. Furthermore, neither the raw dense point cloud even

if with filled holes and cleaned from outliers nor a dense poly-

gon mesh is desired for typical applications of 3D city modelling.

Usually a certain level of abstraction is desired and needed to ob-

tain models with as little noise as possible, without any clutter,

and without the presence of irrelevant details.

In this paper a fully automatic pipeline is used to obtain a simpli-

fied mesh from a given dense point cloud (see Figure 1). Strong

assumptions about the data lead to priors that allow to rigorously

remove noise and outliers on the one hand and introduce a certain

level of abstraction on the other hand. Height maps are used as

an intermediate step and interpreted as Markov Random Fields.

This probabilistic optimization casts the surface reconstruction as

a labelling problem and allows the inclusion of aforementioned

priors (among other possibilities).

The following Section 2 gives a brief overview about related work.

Section 3 describes details of the used processing chain which is

evaluated on an example dataset in Section 4. The last Section 5

concludes the paper and discusses shortcomings as well as future

research directions.
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Figure 2. An overview of the geometric processing steps of the applied pipeline: Starting from a point cloud (a), the ground plane and

corresponding coordinate system is found (b). Next, a height map of discreet height values is estimated (c). The boundaries of this

height map are simplified (d) and a constrained Delaunay triangulation is used on the horizontal surfaces (e). Finally, the horizontal

faces are displaced and the vertical faces are added (f).

2. RELATED WORK

Very good reconstruction results have been achieved for subur-

ban areas by feature based approaches such as (Baillard and Zis-

serman, 1999, Bignone et al., 1996, Fischer et al., 1999, Tail-

landier and Deriche, 2004, Vosselman, 1999). However, these

early methods rely on sparse line features to encode the whole

building geometry. Since the fusion of such sparse features is

error prone and unstable, the additional usage of other informa-

tion sources such as cadastral maps has been addressed e.g. in

(Baillard, 2004, Haala and Anders, 1996, Suveg and Vosselman,

2004). While this external data decreased the number of ambigui-

ties, mismatches, and missing features during the fusion process,

it cannot be assumed to be available for every (part of a) city.

Even if it is available, it is of varying accuracy and need to be

carefully aligned with the image data.

The use of height measurements, either obtained by laser scans

or MVS, has been addressed before as well, e.g. in (Haala and

Brenner, 1997, Maas and Vosselman, 1999). The works in (Sohn

and Dowman, 2007, Chen et al., 2004, Hui et al., 2003, Zebedin

et al., 2008) combine height information from a LIDAR scan with

satellite images on the basis of line features. Our work differs by

working on point clouds only, which can be generated with any

sufficiently accurate MVS approach, and does not rely on the de-

tection of any other sparse image features. It does not require any

manual interaction and allows the generation of different levels

of geometric detail.

An extensive amount of work has been published on the recon-

struction of man made structures. Many of these methods use

Markov Random Fields (MRFs), as for example (Furukawa et

al., 2009a, Sinha et al., 2009) which compute a dense depth map

and cast the reconstruction as a labelling problem. Each label

designates a plane aligned with the main directions in man made

structures (Furukawa et al., 2009a) or computed from line inter-

sections (Sinha et al., 2009).

A subset of possible applications is the reconstruction of building

facades from street-level imagery (in contrast to whole building

models from aerial images). Corresponding methods range from

rather simple approaches such as ruled vertical surfaces (Cornelis

et al., 2007) to more sophisticated works with axis-aligned and

facade-parallel rectangles (Xiao et al., 2009). The work in (Ley

and Hellwich, 2016) uses an orthographic depth map as in (Xiao

et al., 2009), but allows more general shapes during the regular-

ization. It applies the MRF formulation directly in the coordinate

system of the facade and constrains planes to be parallel to it.

Our work is heavily inspired by (Ley and Hellwich, 2016) and

exploits the same processing chain to reconstruct building mod-

els from aerial images instead of single facades from close-range

imagery.

There are approaches available that extend depth maps to full 3D

models having significantly more degrees of freedom, e.g. (Fu-

rukawa et al., 2009b, Chauve et al., 2010). However, similar to

(Ley and Hellwich, 2016), a 2.5D approach is sufficient for the

case of simple building models and states an optimization task

that is easier to solve.

3. METHODOLOGY

Our approach follows closely the work in (Ley and Hellwich,

2016) and is described in the following subsections. The main

difference is that the approach of (Ley and Hellwich, 2016), in

order to reconstruct single building facades, operates in a coordi-

nate system that is aligned to the facade plane while we apply this

approach aligned to the ground plane to reconstruct entire cities.

Figure 2 highlights the major steps.

Any standard SfM and MVS methods can be used as long as they

are able to produce point clouds of sufficient quality. It should

be noted that the proposed approach is not necessarily limited to

a photogrammetric generation of the point cloud but could also

exploit e.g. LIDAR data with the only difference that the resulting

mesh would not be textured.

Although our goal is to produce a (simplistic) mesh as the 3D

city model, height maps are estimated as an intermediate step.

The usage of height maps has the important consequence that the

general orientation of the ground plane needs to be accurately

estimated. This is discussed in Section 3.1.

In a second step the individual values of the height map are es-

timated. To this end, a set of height hypotheses is generated as

described in Section 3.2 and subsequently used as labels for the

pixels of the height map. In this way the estimation of continuous

height values is cast as a discrete labelling problem which can be

efficiently solved via energy minimization techniques.

To obtain a mesh from the estimated height map, the bound-

aries of areas with homogeneous height values are detected and

used for a constrained Delaunay triangulation as described in

Section 3.3. In a last step the input images are used to compute a

texture map (see Section 3.4).

3.1 Plane Alignment

The subsequent estimation of the height map requires an accu-

rate estimation of the ground surface orientation including an in-

plane rotation that aligns major line directions with the coordinate

axes. Planes in the given point cloud are detected by a modified

version of PEaRL (Isack and Boykov, 2012) which consists of

two phases: The labelling phase assigns points to plane hypothe-

ses, relying on the assumption of local smoothness and is formu-

lated as MRF based alpha expansion. Since this would require the

definition of a neighborhood operator on point clouds, (Ley and

Hellwich, 2016) replaces that step with a dense conditional ran-

dom field. The corresponding weights are computed as Gaussian



kernels on the points’ 3D position and color value. The model

fitting phase adjusts the plane parameters in order to fit them to

the assigned data points.

Similar to (Ley and Hellwich, 2016), we use PEaRL with 30 hy-

potheses, one of which is a clutter hypothesis to soak up outliers.

Of the 29 plane hypotheses with differing support (i.e. number

of assigned points), the one with the most support is selected as

the ground plane. Since roofs etc. result in less points than the

ground, the estimated ground plane usually describes the ground

surface very well.

In a last step LSD line segments (Grompone von Gioi et al., 2012)

are detected in the input images and projected onto the above

established ground plane. A histogram of line directions provides

the orientation of the main directions within the city. Of these one

is selected to rotate the coordinate system of the ground plane

accordingly. This ensures that the grid structure of the height

map is properly aligned with most line structures in the scene,

which is beneficial for planned cities.

3.2 Height Map

We assume that the ground surface of the city is mostly flat and

can be covered by a plane. In case of non-flat city grounds a

DSM could be used to account for the corresponding height vari-

ations. Based on this assumption the remaining geometry of the

city can be described by a 2.5D model, i.e. as a height map. Sur-

faces parallel to the ground plane are mostly well visible in aerial

images and are thus often well reconstructed in the point cloud.

Surfaces perpendicular to the ground plane (such as facades) are

often only visible in a few images under large skew and are thus

often not well reconstructed. While the former ones are explic-

itly modelled by the above mentioned 2.5D model, the later case

is modelled only implicitly as height jumps in the map.

The height map is embedded into the coordinate system of the

ground plane. It is extended in both coordinate directions such

that it covers 98% of the input point cloud.

On the one hand, the estimation of the corresponding height val-

ues is based on the input point cloud. On the other hand, it should

be constrained by regularizations to overcome noise, outliers, and

missing data. Ignoring non-flat roofs, many structures in a city

are either parallel or perpendicular to the ground plane. A rea-

sonable regularization is thus to enforce rectangular regions of

equal height values as in (Ikehata et al., 2015, Xiao et al., 2009).

However, this is too restrictive in our case as many buildings in a

city cannot properly be described by rectangular outlines.

The work in (Ley and Hellwich, 2016) follows the pixel labelling

approach in (Furukawa et al., 2009a, Sinha et al., 2009) which

allows more general shapes. The point cloud data is projected

onto the ground-aligned coordinate system in order to compute a

histogram of height values. The maxima of this histogram pro-

vide a set of height hypotheses, that represent possible “labels”

which can be assigned to the pixels of the height map. This la-

belling task is solved by interpreting the height map as a Markov

Random Field (Ley and Hellwich, 2016) and minimizing the en-

ergy term in Equation (1) through repeated graph cuts with alpha

expansion (Boykov et al., 2001).

E =
∑

p

Ed(hp) +
∑

p,q∈N(p)

Es(hp, hq) (1)

The data term Ed(hp) is the cost for assigning hypothesis hp

to height map pixel p. The binary term Es(hp, hq) enforces

smoothness by penalizing the assignment of differing height hy-

potheses hp, hq to neighboring pixels p, q.

The data term Ed(hp) is based on two individual factors: First,

the clamped absolute difference between the height hypothesis

hp and the point cloud points projected into pixel p. Second,

the number of free space votes that encode the condition of un-

obstructed view rays between point cloud points and their corre-

sponding cameras (see e.g. (Furukawa et al., 2009a, Sinha et al.,

2009, Ley and Hellwich, 2016)). These votes are computed be-

forehand by tracing the path from each point cloud point to each

camera that observes this point. Each height hypothesis accumu-

lates a penalty for view rays that it would block.

To enforce smoothness Es(hp, hq) = 0 for all hp = hq and

Es(hp, hq) > 0 for hp 6= hq . This encourages large regions of

uniform height. Since geometric edges are often visible in the

image data, the cost depends on the edge strength in the input

images. Since the height map does not correspond to any of the

images directly, there is no direct mapping between locations in

the images and the height map. That is why the height hypotheses

as well as the camera poses are used to locate the corresponding

front and back edges of a height discontinuity in the image data.

This regularization removes outliers to a large extent while main-

taining important structures. Simultaneously, a reasonable (while

simple) inpainting of missing regions in the point cloud is achieved.

3.3 Meshing

The height map computed in Section 3.2 only serves as an inter-

mediate step to construct a low poly mesh that finally represents

the 3D city model.

The boundaries between areas of homogeneous height are sim-

plified by converting them to a graph of connected line segments

in a first step. An optimization similar to Variational Shape Ap-

proximation (VSA) (Cohen-Steiner et al., 2004) iterates between

model assignment and model fitting in order to fit straight lines to

large, junction free stretches of line segments. The model assign-

ment assigns line segments to straight lines in a greedy fashion by

applying a line growing process on the graph. The model fitting

adjusts the parameters of the straight lines to resemble the as-

signed line segments. New straight lines are added subsequently

if needed. The optimization procedure ends, when the set of

straight lines is a sufficient approximation of the height bound-

aries. At junctions and connected straight lines anchor points are

automatically placed.

This contour extraction results in simplified and smooth regions.

The individual (ground plane parallel) components are meshed

by a constrained Delaunay triangulation based on the set of con-

nected anchor points representing the boundary curves.

A last step adds the mesh elements that are perpendicular to the

ground plane and connects them to the parallel faces at a certain

height.

3.4 Texturing

If the point cloud was generated by MVS, i.e. image-based 3D

reconstruction, the input images can be used to texture the mesh

computed in Section 3.3. The projection of the input images onto

the mesh needs to take occluded regions into account. Otherwise



Figure 3. Automatically computed UV layout (left) and texture

(right) for the Toronto dataset.

Figure 4. One of the aerial input images of the Toronto dataset.

the texture of the ground plane and of buildings etc. will mix at

the connecting mesh regions. The estimated city model and the

camera poses are used to create a depth map for each camera.

This height map assigns the distance to the closest surface point

on the corresponding view ray to each pixel and can be easily

computed by rasterizing the mesh in the image space.

The 3D mesh is unfolded into a 2D texture space by first sepa-

rating the horizontal faces from the vertical ones, and then un-

wrapping the vertical faces by walking along the loops or strips

that they form. An example of such an automatically computed

UV-layout can be seen in Figure 3. The mesh is rasterized into

the texture based on the obtained 2D texture coordinates. For

each texel, the distance between the surface and each camera is

compared to the corresponding value in the camera’s depth map.

If the camera observes this part of the scene, the color of the in-

put image at this position and the colors of all other unoccluded

images are averaged and assigned to the texture.

4. RESULTS

The proposed approach is evaluated on the Toronto dataset of the

ISPRS Test Project on Urban Classification and 3D Building Re-

construction (3D Scene Analysis, n.d.). This dataset includes

roughly 1.45 km2 of the central area of Toronto, Canada. The

aerial images have been acquired by Microsoft Vexcels UltraCam-

D (UCD) camera. It contains typical structures of a modern North

American city such as low- and high-story buildings but is rather

challenging for MVS reconstructions as the overlap between im-

ages is quite low. Figure 4 shows an example image.

Figure 5. Results of the proposed approach on the Toronto

dataset. Top: Original input point cloud containing noise,

outliers, and large missing regions; Middle: The obtained 3D

city model with filled regions and removed outliers; Bottom: The

obtained untextured mesh as visualization of the pure geometry.

We use a custom SfM pipeline for the sparse reconstruction (ig-

noring the supplied camera positions) and perform a dense recon-

struction using PMVS2 (Furukawa and Ponce, 2010). Figure 5

shows the input point cloud obtained by MVS as well as the re-

sult of the proposed method as textured 3D model and untextured

mesh. The input point cloud contains (besides noise and outliers)

large holes of missing data since these parts of the scene are par-

tially occluded in the input images. These regions are filled in

the computed 3D city model with reasonable texture and geome-

try. Furthermore, it is generally physically plausible and visually

pleasing, contains all major structures, while suppressing irrele-

vant details. A better view on the computed geometry is provided

by the untextured mesh in the last row of Figure 5. It shows

that the major structures are successfully reduced to an appropri-

ate level of detail. Simple buildings are represented as blocks,

while the general structure of more complicated buildings is ap-

proximated well by more sophisticated shapes. Nevertheless, the

general geometry of the scene is successfully kept at a minimum

despite working on an input point cloud with gross errors and

missing data.



(a) Missing facade

surfaces.

(b) Mirrored structures due to

reflections on glass facades.

Figure 6. Missing and erroneous data in the provided reference

data of the Toronto dataset1.

The Toronto dataset contains ALS data of the scene as reference

data. The ALS data was acquired in February 2009 by Optechs

ALTM-ORION M at an altitude of 650 m and has an approximate

point density of 6.0 points/m2.

In principle, the availability of the ALS data allows a quantitative

analysis. The corresponding performance metrics, however, have

to be interpreted with a certain care for two major reasons.

1) The provided point cloud contains its own measurement er-

rors as for example missing regions. In particular many of the

facades, i.e. areas perpendicular to the ground plane are not avail-

able (Figure 6a shows an example1). Another problem are ghost

structures, which are caused by reflecting parts of the scene such

as glass elements on building facades. Figure 6b shows how a

small building to the left of the skyscraper is placed within the

skyscraper.

Furthermore, the images and the point cloud have been acquired

at different dates. The time delay between both acquisitions caused

that certain parts of the acquired data are different. One example

are construction sites such as shown in Figure 7a. Although not

being completely finished during point cloud acquisition (as in-

dicated by the construction cranes on top), a building is clearly

visible in the ALS scene. The images of the same part of the city,

however, show merely an empty place. Another example is veg-

etation, such as parks, which are clearly visible in the ALS data

which was acquired during spring (see for example Figure 7b),

but are not reconstructed by MVS. The images have been ac-

quired earlier where trees had no leafs and the branches alone are

too small to be considered by the reconstruction. Also smoke and

steam as for example shown in Figure 7c are not reconstructed by

MVS despite being visible in the ALS scan.

2) The overall goal of this work is not to obtain a highly accurate

3D reconstruction, but a meaningful abstraction of the scene to be

used as a 3D city model. Abstractions, however, basically mean a

reduction to the quintessence. The corresponding “loss” of preci-

sion is therefore a necessary side effect and cannot be counted as

an erroneous estimate. This renders any quantitative evaluation

difficult, even if perfect ground truth data was available.

For reference we show the precision and completeness of the ob-

tained mesh (with 30k faces), of a Poisson surface reconstruction

(Kazhdan and Hoppe, 2013) (6.3M faces), of a simplification of

the Poisson mesh (down to 100k faces), as well as of the original

point cloud with respect to the ALS scan in Figure 8. To compute

these measures, points are sampled randomly, but uniformly from

the obtained meshes. While precision is the (average) minimal

1For better visualization, we colorize the ALS point cloud based on

intensity (red), number of reflections (green), and reflection index (blue).

(a) The construction of buildings not existent during image

acquisition (left) has significantly proceeded during the ALS

scan (right).

(b) Trees apparent in the ALS scan (right) lost their leaves

during fall when the images were acquired (left).

(c) Non-stationary signals such as steam (here from the ALS

data) are generally not reconstructed by standard MVS methods.

Figure 7. Differences between reference ALS data and the

image-based MVS reconstruction, mostly caused by large time

delay between data acquisitions1.

distance of a sampled point to a reference point, completeness

states the (average) distance of a point in the reference data to the

closest point in the sampled point cloud. In addition, for com-

pleteness we also provide the slightly more common metric of

the fraction of points whose distance is below a threshold (5m in

our case). The values are listed in Table 1. In addition, complete

cumulative histograms for precision and completeness are shown

in Figure 8, which plot for all thresholds between zero and 50m

the fraction of points whose distances are below that threshold.

As expected, the abstraction results in an increased error as can be

seen in Table 1 and at the top of Figure 8. The average precision

of the original point cloud lies at 3.2m, which decreased to 4.9m

for both Poisson reconstructions and to 5.0m for the proposed

approach (please note that smaller values mean higher precision).

The average completeness, however, increased from 4.1m of the

original point cloud to about 3.7m for both Poisson reconstruc-

tions to 3.4m for the proposed approach (please note that smaller
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Figure 8. Quantitative results of the reconstruction. Top:

Precision; Bottom: Completeness

Method Precision Completeness

Avg. (m) Avg. (m) % < 5m

Proposed 5.00 3.43 82.8

Poisson 4.86 3.68 80.8

Poisson Simplified 4.89 3.76 80.3

MVS 3.22 4.12 79.6

Table 1. Average precision and completeness (ignoring

distances > 50m) on the Toronto dataset.

values mean higher completeness). The bottom of Figure 8 shows

the cumulative histogram of completeness values. The first part

of the histogram (shown enlarged) illustrates that less points in

the reference point cloud have very small minimal distances (< 3m)

to points of the point cloud of the proposed approach. This is an

effect of the abstraction that removes finer details in favour of a

simplified geometry. For distances above 3 meters, the histogram

illustrates that holes in the MVS point cloud are closed by all

three surface reconstruction approaches, but more successfully

by the proposed method.

Figure 9 shows where the errors (in terms of precision and com-

pleteness) are originating. Both, the proposed approach as well

as the input MVS point cloud suffer in terms of completeness

from similar problems: New buildings, a small number of missed

buildings, as well as vegetation seem to be the major sources of

error. In terms of precision, the MVS point cloud performs quite

well, except of course for regions where the scene changed. The

proposed method, however, reconstructs the facades of the build-

ings in addition to their roofs. Since those are not always part

of the ALS data (or are severely undersampled), the facades are

deemed very “imprecise” by the metric. A reference point cloud

0 m 50 m10 m 20 m 30 m 40 m

Figure 9. Precision and completeness as color coded point

clouds. Blue corresponds to a distance of zero, red to a distance

of 50m. From top to bottom: Precision of the proposed method,

completeness of the proposed method, precision of the MVS

point cloud, and completeness of the MVS point cloud.



that contains all facades with adequate point density would be

needed to derive a proper quantitative measure of completeness.

It should thus be noted again, that the quantitative results have to

be taken with a grain of salt. First, the data related problems dis-

cussed above (i.e. the differences between images and ALS scan)

significantly contribute to the measurements above. Second, the

goal of an abstraction is not an highly accurate reconstruction,

but the creation of a realistic and visually pleasing, yet simplis-

tic mesh, which maintains important geometric structures while

keeping the geometry to a minimum. As Figure 5 illustrates, this

goal has been achieved by the proposed method. An interactive

view of the reconstruction is available at (Ley et al., 2017).

5. CONCLUSION AND FUTURE WORK

This paper applies prior work of interpreting the estimation of a

dense depth map as a labelling problem to the task of 3D city

modelling from aerial images. The depth map, which is turned

into a height map in our top down use case, serves as an inter-

mediate step for the construction of a simplified mesh which is

as close as possible to the data while keeping the geometry to a

minimum. In a last step, the obtained mesh is textured based on

the input images.

In general, the approach performs well in the context of 3D city

modelling. It results in visually pleasing abstractions of build-

ings. Major geometric structures are maintained while clutter and

noise are removed.

Despite its performance, the presented approach offers several

possible extensions and improvements. The assumption of a (piece-

wise) planar ground plane can be easily relaxed when a digital

surface model of the scene is available.

Future work will focus on the usage of additional priors as for ex-

ample symmetries, repetitions, and semantic information. Sym-

metries, for example, can be encouraged by additional links of the

MRF that connect pixels that should have the same label. Other

constraints can easily be included in the energy of Equation 1. On

the one hand, the data term can depend on semantic information

for example to suppress vegetation from being part of the city

model. On the other hand, the smoothness term can be altered to

favor height jumps along certain lines such as borders of semantic

objects.

Last but not least, the geometric model can itself be improved. At

the moment only planes parallel to the ground plane are consid-

ered, which led to the desired simplistic results. However, sloped

planes, cones, and other typical roof shapes can easily be included

in the framework.
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