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ABSTRACT:

The reconstruction of the 3D geometry of a scene based on image sequences has been a very active field of research for decades.

Nevertheless, there are still existing challenges in particular for homogeneous parts of objects. This paper proposes a solution to

enhance the 3D reconstruction of weakly-textured surfaces by using standard cameras as well as a standard multi-view stereo pipeline.

The underlying idea of the proposed method is based on improving the signal-to-noise ratio in weakly-textured regions while adaptively

amplifying the local contrast to make better use of the limited numerical range in 8-bit images. Based on this premise, multiple shots per

viewpoint are used to suppress statistically uncorrelated noise and enhance low-contrast texture. By only changing the image acquisition

and adding a preprocessing step, a tremendous increase of up to 300% in completeness of the 3D reconstruction is achieved.

1. INTRODUCTION

The reconstruction of the 3D geometry of a scene based on im-

age sequences has been a very active field of research. The joint

effort in the development of keypoint detectors, matching tech-

niques, path estimation methods, bundle adjustment, and dense

reconstruction has resulted in very successful solutions that are

able to robustly and accurately reconstruct a 3D scene from given

images. Nevertheless, there are still existing challenges in partic-

ular for difficult acquisition circumstances (e.g. inhomogeneous

or nonconstant lighting), difficult objects (e.g. with homogeneous

or reflective surfaces), or certain application scenarios (e.g. fa-

cade reconstruction). One especially critical example are weakly-

textured parts of objects, where the lack of correct matches leads

to holes and topological errors within the 3D point cloud.

This paper proposes to enhance the 3D reconstruction of weakly-

textured surfaces by using standard cameras as well as a standard

multi-view stereo (MVS) pipeline. Only changing image acqui-

sition and adding a preprocessing step enabled a tremendous in-

crease in completeness of the achieved reconstruction.

The underlying idea of the proposed method is based on the in-

sight that in the real world there is no such thing as a textureless

surface. What is usually meant with this phrase is that the exist-

ing physical texture is either too fine-grained to be captured by

the spatial resolution of a given camera, or that it has insufficient

contrast. Especially the latter causes the contribution of the phys-

ical texture to the measured signal to drop below the contribution

of the measurement noise, which makes a distinction of the two

close to impossible. Consequently, all that is necessary to exploit

the existing texture in this case is to enhance the signal-to-noise-

ratio. Based on this premise, this paper proposes to use multiple

shots per viewpoint to suppress statistically uncorrelated noise

and enhance low-contrast texture. It models the measured signal

as a mixture of truly random as well as fixed-pattern noise and

leads to a significant improvement of image quality and (more

importantly) of the completeness of the reconstruction. An ex-

ample is shown in Figure 1, where 3D points are color coded

depending on how many images per viewpoint were at least nec-

essary for their reconstruction (1=̂blue to 30=̂red). A flexible

and open-source C++ implementation of the proposed framework

is publicly available (Ley, 2016).

Figure 1. Exemplary reconstruction: 3D points are color coded

depending on how many images per viewpoint were at least nec-

essary for their reconstruction (1=̂blue to 30=̂red)

2. RELATED WORK

The principle idea to increase the image quality to ease the task

of 3D reconstruction is not new. Previous approaches can be

coarsely divided into two groups: Exploiting multiple images or

using local enhancement methods based on a single image.

There are rarely any 3D reconstruction pipelines that explicitly

use multiple images from the same viewpoint. On the contrary,

many state-of-the-art approaches seek to automatically reject im-

ages that have a too small baseline, since these image pairs do

not provide strong constraints on the estimated depth. One of the

seldom examples that does use multiple images is High Dynamic

Range (HDR) imaging. The lowest and highest light intensity of

real-life scenes can easily reach a ratio of 500, 000 : 1 (Debevec

and Malik, 1997). This high dynamic range can usually not be

handled by standard cameras leading to a clipping of dark areas

to zero or bright areas to 255 and therefore a loss of details in

these regions. HDR imaging has been proposed as a solution to

this problem by combining multiple images with different expo-

sure times or shutter speeds to a single radiance map capturing a

large dynamic range (Mann and Picard, 1995, Debevec and Ma-

lik, 1997, Robertson et al., 1999, De Neve et al., 2009).



Only few works try to exploit the advantages of HDR images for

computer vision applications in general and multi-view stereo in

particular. The advantages of HDR photogrammetry have been

shown in laboratory experiments in (Cai, 2013). While HDR im-

ages are used in (Ntregkaa et al., 2013) and (Guidi et al., 2014)

to improve 3D reconstructions by simultaneously enhancing con-

trast in dark and bright regions of buildings and vases/plates of

cultural heritage, respectively, (Kontogianni et al., 2015) investi-

gates the influence of HDR images on keypoint detection.

It might not be possible or desirable in all cases to acquire multi-

ple images from the same viewpoint or to rely on more advanced

HDR image composition techniques that can handle moving cam-

eras. The next best choice is to use contrast enhancement tech-

niques that are based on a single image. It has been shown that

contrast enhancement increases the performance of keypoint de-

tectors (e.g. (Lehtola and Ronnholm, 2014)). The work of (Bal-

labeni et al., 2015) investigates the influence of multiple image

preprocessing techniques including color balancing, image de-

noising, RGB to gray conversion, and content enhancement on

the performance of the 3D reconstruction pipeline.

3. PROPOSED METHODOLOGY

Weakly-textured areas in images generally pose two crucial prob-

lems for any 3D reconstruction pipeline. First, as discussed above,

“textureless” often means that the texture is “hidden” because the

contribution of the physical texture to the measured signal is ap-

proximately as strong as the measurement noise. Consequently,

the first task is to enhance the signal, i.e. to significantly suppress

the noise. The second problem is that the restored texture remains

weak compared to image areas with higher contrast but needs to

be stored within the same image data. HDR images for example

solve this problem by allowing enough numerical precision to si-

multaneously represent small and large signal changes. However,

freely available MVS pipelines that can process HDR images (or

similar advanced formats) are rare ((Rothermel et al., 2012) is

one of the few exceptions). That is why the second task consists

of saving weak and strong texture components within the same 8-

bit image to use common reconstruction software. An overview

of the proposed noise reduction is visualized in Figure 2.
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Figure 2. Flowchart of the proposed method

To actually increase the signal-to-noise ratio (SNR) we explore

the idea of averaging multiple images per viewpoint. The photog-

rapher is required to take a whole range of images per viewpoint

by shooting with a tripod to guarantee alignment. The images are

averaged to suppress the stochastic noise. In theory this should

result in a reduction of the noise’s standard deviation by 1/
√
n for

n images under the assumption of iid. noise. The combination of

multiple exposures into a single image is similar to the HDR ra-

diance acquisition proposed by e.g. (Debevec and Malik, 1997)

which was shown to improve 3D reconstructions with under- and

overexposed regions (Guidi et al., 2014). Contrary to (Guidi et

al., 2014) we do not try to acquire as few images per viewpoint as

possible while covering a large exposure range. Instead we use

a large batch of images per viewpoint covering a small exposure

range, which can easily be accomplished with extended camera

firmwares that support scripting.

The approach of averaging can only deal with random fluctua-

tions that are temporally decorrelated. Realistic image noise is

more complicated than that and is actually a mixture of this spa-

tially and temporally random process and a spatially random but

temporally deterministic process (i.e. fixed pattern noise, FPN).

We model both effects by an extended signal model (Section 3.1)

and estimate the parameters of the FPN beforehand (Section 3.2).

To put the gains of averaging multiple exposures into perspective,

a second option to increase the SNR is explored: The BM3D fil-

ter (Dabov et al., 2007) suppresses image noise by exploiting the

self similarity of small patches in natural images. This noise re-

duction filter was shown to improve the reconstruction (Ballabeni

et al., 2015) and requires only a single image per viewpoint. Our

own empirical observations (see Section 4.1) support this, espe-

cially with weakly-textured surfaces.

The output of the fused images as well as the BM3D filter are

stored with floating point precision. Within these images only

the high frequency components (i.e. fine textured regions) are

of actual interest for 3D reconstruction since only those can be

matched with the desired spatial precision. A high-pass filter

would amplify the high frequency components, but tweaking the

filter gain to sufficiently enhance weakly-textured regions with-

out clamping/saturating strongly-textured parts proves difficult.

The proposed solution is to adaptively amplify the signal depend-

ing on the local variance. This is accomplished by the application

of the Wallis filter (Wallis, 1974) to the non-quantized images.

It removes the local mean and amplifies the output by the re-

ciprocal of the local standard deviation (see Section 3.4). The

result is a signal with removed low frequency components and

constant local variance, which can be reduced into 8-bit images

while keeping the quantization noise small. The resulting images

are fed into an off-the-shelf reconstruction pipeline (an in-house

SfM implementation or VSFM (Wu, 2007, Wu, 2013, Wu et al.,

2011), followed by PMVS2 (Furukawa and Ponce, 2010)).

The following subsections discuss in more detail the individual

processing steps as well as our assumptions concerning the noise.

3.1 Noise model

The image noise usually observed in images is created, modified,

and shaped by many camera components. The irradiance itself,

due to the quantized nature of photons, is already a random pro-

cess. But also the electrical signals and charges in the sensor are

subject to noise. In addition to being random, the expected values

of these processes can also differ slightly from pixel to pixel, re-

sulting in a fixed pattern noise. Signal and noise progress further

through A/D conversion, demosaicing, color matrix multiplica-

tion, tone mapping, and JPG compression, each step of which

further obfuscates the nature of the noise. To simplify the situ-

ation, we use demosaiced raw images, bypassing the effects of

color correction, tone mapping, and JPG compression. In addi-

tion, the bit depth of the raw images is usually slightly higher

than the common 8 bit per channel. Since SfM/MVS pipelines

are largely robust to changes in brightness, contrast, and color

temperature, we assume that aesthetically pleasing color correc-

tion and tone mapping is not of importance and can be omitted.

Without the need to model these difficult effects, we assume for

each channel a linear relationship between the measured value

and the actual exposure perturbed by noise. Let vc(x, y) be the



pixel value of channel c at pixel location x, y. Let further ec(x, y)
be the true exposure that we seek to estimate. We assume a lin-

ear relationship between ec(x, y) and vc(x, y) that is individu-

ally modeled by Equation 1 for each pixel and channel by a scale

sc(x, y) and an offset oc(x, y).

vc(x, y)
︸ ︷︷ ︸

output

= sc(x, y)
︸ ︷︷ ︸

scale

·
(
ec(x, y)
︸ ︷︷ ︸

input

+nc(x, y)
︸ ︷︷ ︸

noise

)
+ oc(x, y)
︸ ︷︷ ︸

offset

(1)

The additive noise term nc(x, y) is assumed to have zero mean

(i.e. E[nc(x, y)] = 0). In other words, we assume that if the ex-

pected value of the noise should be nonzero, that it can be mod-

eled by the scale and offset of the linear relationship. We refer to

the random, mean-free noise term nc(x, y) as the random noise,

whereas the patterns caused by differing scales sc(x, y) and off-

sets oc(x, y) will be referred to as the fixed pattern noise (FPN).

Given this signal model, denoising is a simple process of revers-

ing the linear model and averaging. The N images vi,c(x, y) of

each vantage point are first freed of their FPN by Equation 2 and

then averaged by Equation 3 to suppress the random noise.

êi,c(x, y) =
vi,c(x, y)− oc(x, y)

sc(x, y)
(2)

ēc(x, y) =
1

N

N∑

i=1

êi,c(x, y) (3)

A precise estimation of the absolute pixel values is not of im-

portance at this point since SfM/MVS pipelines are robust with

respect to intensity changes. It is only necessary to ensure that

neighboring pixels behave equally. Otherwise, high frequency

noise is created which is against the principles of our method.

It should be noted that we apply this model to the image after de-

mosaicing. At this point of the image formation process, the mea-

sured intensity vc(x, y) does actually not only depend on ec(x, y)
at x, y. It is also influenced by the exposures and noise terms in

the local neighborhood, where the precise nature of this influence

depends on the exact shape and nature of the demosaicing filter.

Nonetheless, we ignore this spatial dependency and leave a thor-

ough investigation of its effects for future work.

3.2 Estimating FPN parameters

This section deals with the estimation of the per pixel x, y and

channel c scales sc(x, y) and offsets oc(x, y) that define the FPN.

The FPN is camera dependent and must be estimated with the

very camera which is also used to capture the images of the 3D

reconstruction. We conducted a couple of simple experiments

to investigate the stability of the FPN noise. It seems to stay

unchanged over a long period of time, to be independent from

the battery charge level, and does neither change with camera

movement nor turning the camera on/off. However, future work

should investigate the stability with respect to e.g. temperature

and camera age. Dust grains on or in the lens are a very transient

form of FPN that needs to be kept in check by repeated cleaning.

Central to our approach of calibrating the FPN is the observation

that only (spatially) high frequency texture is of interest and thus

only high frequency noise needs to be suppressed. Smooth tran-

sitions between slightly darker and slightly brighter regions, like

vignetting, are acceptable because of the aforementioned robust-

ness of SfM/MVS to those variations.

By covering the lens with a white, translucent cap, setting the

focus to infinity, and opening the aperture as far as possible, a

homogeneous (or at least smooth) image is projected onto the

sensor. In this setup, multiple images are taken with different

exposure times to cover different exposures. We use M = 7
stops with N = 85 images per stop. Let vl,i,c(x, y) be the ith
image captured for the lth stop. For each stop, the average image

is computed to suppress the random noise.

vl,c(x, y) =
1

N

N∑

i=1

vl,i,c(x, y) (4)

At this point the seven average images vl,c(x, y) should be smooth

if not for FPN. All deviations are simply attributed to FPN.

We estimate the true exposure by applying a Gaussian blur to the

seven average images (Equation 5) and perform a weighted least

squares (LS) fit to estimate the scale and offset (Equation 6).

ẽl,c(x, y) = vl,c(x, y) ∗Gσ=30(x, y) (5)

(
sc(x, y)
oc(x, y)

)

= argmin
s,o

M=7∑

l=1

(
s · ẽl,c(x, y) + o− vl,c(x, y)

)2

αl,c(x, y)

(6)

From the variance between the individual images vl,i,c(x, y) that

were merged into the average images vl,c(x, y), a confidence in-

terval and subsequently a weight αl,c(x, y) = CIl,c(x, y)
2 can

be computed where CIl,c(x, y) is the width of the confidence in-

terval for vl,c(x, y) (see Equation 9).

Care must be taken with slightly imprecise exposure times or

changes in the ambient light which result in an overestimation

of the confidence intervals. We equalize the brightnesses of the

images vl,i,c(x, y) by scaling the image values such that the local

brightnesses of each image are close to ẽl,c(x, y):

v′l,i,c(x, y) = vl,i,c(x, y) ·
vl,c(x, y) ∗Gσ=30(x, y)

vl,i,c(x, y) ∗Gσ=30(x, y)
(7)

With these brightness adjusted images, the remaining random

noise in the average vl,c(x, y) can be estimated by Equation 8.

n̂l,c(x, y) =
1

N2

N∑

i=1

(
v′l,i,c(x, y)− vl,c(x, y)

)2
(8)

The actual confidence interval width follows from the assumption

of a Student-t distributed average

CIl,c(x, y) = 2 · c95%,N−1 ·
√

n̂l,c(x, y) (9)

where c95%,N−1 is the 95% percentile of the Student-t distribu-

tion with N − 1 degrees of freedom.

The fitted lines can be seen for the red channel of 4× 4 example

pixels in Figure 3. Even though the confidence intervals are quite

large, slight variations in the pixels’ sensitivities are perceivable.

At least the stronger deviations are well expressed by the linear

relationship. A LS fit with uniform weighting is shown in blue

for comparison.

Figure 4 visualizes the scales sc(x, y) and offsets oc(x, y) per

pixel x, y and color channel c as images. Several patterns are

noticeable, such as the out of focus dust grains in the scale image,

or the vertical stripes in the offset image.

3.3 Noise reduction evaluation

In addition to a practical evaluation with current 3D reconstruc-

tion software in Section 4, we verify the effectiveness of our noise

suppression in a more controlled test setup. We acquire a new set
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Figure 3. Deviations vl,c(x, y) − ẽl,c(x, y) over ẽl,c(x, y) for the red channel. Note that the 7th stop saturated the red channel and is

thus not included. Dashed lines are fitted linear FPN models (blue LS, green weighted LS of Equation 6).

Figure 4. Contrast enhanced visualization of the FPN model. Off-

set o (left) and scale s (right) for all three color channels.
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of images by iteratively averaging images and computing the av-

erage local variance as an estimate of the remaining noise.

of 100 images with the same camera setup as in Section 3.2, i.e.

a set of 100 images that should be smooth, if not for noise. The

exposure time was tweaked to achieve an image that is neither

bright nor dark. The actual tone mapped sRGB color values are

approximately (160 120 60). In the (16-bit) raw images, this is

on average (11474.1 6148.32 2586.93).

Since the images should be smooth in the absence of noise, the

(random and fixed pattern) noise in an image can be measured by

estimating the local variance in each color channel and averaging

that variance over the image. The local variance varēc(x, y) of

an image ēc(x, y) is computed by replacing the usual summation

in the estimation of expected values with a Gaussian convolution

that serves as a soft windowing function (Equations 10-12).

varēc(x, y)
︸ ︷︷ ︸

local second central moment

= E
[
(ēc(x, y))

2
]

︸ ︷︷ ︸

local second moment

−E [ēc(x, y)]
︸ ︷︷ ︸

local first moment

2
(10)
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Figure 6. Noise reduction of the proposed approach with and

without FPN for increasing numbers of images within the differ-

ent color channels (denoted in corresponding color). Top: Re-

maining noise variance in the 16-bit value range. Bottom: Noise

reduction in dB relative to the initial noise.

E
[
(ēc(x, y))

2
]
= (ēc(x, y))

2 ∗Gσ=30(x, y) (11)

E [ēc(x, y)] = meanēc(x, y) = ēc(x, y) ∗Gσ=30(x, y) (12)

We iteratively process an increasing subset of the 100 verifica-

tion images to plot the remaining noise against the number of

used images. Figure 5 visualizes this iterative process. The re-

sults can be seen in Figure 6 alongside the curves without FPN

removal. For reference, a “signal energy” is plotted as well which

is simply the sum of squared values in the image. We do not

compare against BM3D here, because the strength of BM3D is

to reduce the noise while keeping the underlying structure intact.

This aspect of BM3D can’t be evaluated here, since there is no

real structure in this test.



As can be seen in the plots, averaging images significantly re-

duces the image noise. However, even with FPN removal, the

curves start to converge after about 30 to 40 images which indi-

cates that the FPN model still leaves room for improvement. Of

more practical significance is the observation, that for the first

couple of images the gains of the FPN removal are rather small.

This means that even without the, by comparison, complicated

estimation of the FPN, significant gains can be achieved by just

averaging a hand full of images.

3.4 Packing into 8-bit

Most SfM/MVS implementations handle images as grayscale or

rgb images with 8 bits per channel. The peak signal to quantiza-

tion noise ratio is approximately 6.02 ·Q dB for Q bits. Consid-

ering this, the PSNR due to quantization noise of 48 dB is more

than acceptable if the full range of 256 intensity values is used.

In the case of SfM/MVS, the matched signals are high frequency

signals extracted from small patches. In the showcased “White

Walls” scenario (see Section 4.1), these local image patches most

definitely do not make use of the full intensity range.

In the test performed in Section 3.3, the standard deviation of

the residual noise in the blue channel can be suppressed to about

29/65535 or 0.11/255 with just 20 images. By just linearly map-

ping the denoised images into the 8-bit range, a substantial amount

of the gained signal fidelity would be lost.

To retain these weak signals, they must be amplified, i.e. mapped

to a larger interval of the 8-bit range. High frequency image

structures are much more important for SfM/MVS than low fre-

quency image structures. By using a high pass filter, the low fre-

quency components of the image are discarded to allow the high

frequency components to make full use of the 256 value range.

Since the high frequency textures are of different power in dif-

ferent image regions (e.g. compare the strong texture on the seat

and sofa with the weak texture on the wall in Figure 7), we use a

modified Wallis filter (Wallis, 1974) which adaptively adjusts the

gain based on the local variance.

As in Equation 10 let varēc(x, y) be the local variance of ēc(x, y)
and let meanēc(x, y) be its local mean (see Equation 12). The

standard Wallis filter normalizes the signal by subtracting the lo-

cal mean and dividing by the local standard deviation. Fitting

e.g. the 3σ range of this normalized signal into the 8-bit value

interval becomes a simple matter of scaling and shifting. Con-

trary to Equations 10 and 12, however, we use a Gaussian width

of σ = 10px for the Wallis filter.

wc(x, y) =

⌊

ēc(x, y)− meanēc(x, y)
√

varēc(x, y)
· 127

3
+ 127.5

⌋

(13)

A big problem with this approach (apart from the fact that the

local signal variance might be estimated as zero) is that some

SfM/MVS implementations implicitly assume a constant amount

of noise in the images. This can be due to reasons as simple as

fixed thresholds during feature detection. However, the variance

of the remaining image noise is far from constant. Firstly, the

sensor noise itself is already not homoscedastic. Secondly, does

the Wallis filter drastically change the amplification from image

region to image region. We alleviate this problem by imposing a

maximal amplification on the Wallis filter such that the 3σ range

of the remaining random image noise in the local neighborhood

is below 10/255 (see Equations 14-16).

uc(x, y) = ⌊(ēc(x, y)− meanēc(x, y)) · λc(x, y) + 127.5⌋
(14)

λc(x, y) = min

(

127

3 ·
√

varēc(x, y)
,

10

3 ·
√

noisec(x, y)

)

(15)

noisec(x, y) = n̂c(x, y) ∗Gσ=10(x, y) (16)

The variance of the remaining random noise n̂c(x, y) is estimated

from the spread of the original images vi,c(x, y). These images

are, similar to Section 3.2, not all of the same brightness and if not

compensated for, these fluctuations would lead to a large overes-

timation of the remaining noise. We proceed as in Equation 7

by adjusting brightnesses and estimate n̂c(x, y) as in Equation 8,

albeit both with the smaller Gaussian kernel of σ = 10px.

Note that we normalize each color channel c individually. We

also experimented with normalization based on the full local 3×3
covariance matrix of the three color channels but observed no

gain over the individual approach (see Figure 9). We believe that

normalizing each color channel individually is sufficient to over-

come quantization noise and that a full “whitening” does not add

any additional benefit beyond that.

4. EXPERIMENTAL EVALUATION

A purely quantitative evaluation of the proposed noise reduction

is already provided in the previous section (see Figure 6) and

is based on a rather theoretical example of an image consisting

completely of a homogeneous area. It was shown, that the sig-

nal model incorporating truly random as well as fixed pattern

noise showed the best reduction of noise within the processed

images, although saturating considerably earlier than the theoret-

ical bound. This section focuses on the impact of the proposed

method on multi-view stereo reconstruction methods.

Two datasets have been acquired by a standard Canon EOS 400D,

both containing weakly-textured areas but objects of different

scales and geometry.

4.1 Wall dataset

The Wall dataset consists of images of a scene containing a couch

and a chair in front of a white wall. The top of Figure 7 shows an

example. Large parts of the scene are planar and visually homo-

geneous areas (i.e. weakly-textured), but of different color and

intensity. The scene is pictured from seven different viewpoints

with 30 images per viewpoint and an average baseline of 40 cm.

In order to analyze the respective influence of the individual com-

ponents, four different test cases are defined:

1. Single exposure (SE): A single JPG image is provided per

viewpoint. No noise reduction or image enhancement is ap-

plied (besides the camera internal processing).

2. Single exposure with Wallis filter (SEW): A single JPG im-

age is provided per viewpoint. The contrast of the image is

enhanced by the Wallis filter.

3. Single exposure with BM3D and Wallis filter (SEBW): As

2), but the noise is locally suppressed by the BM3D filter

before the Wallis filter is applied.

4. Multi exposure with modified Wallis filter (ME-N ): A set

of N images is provided per viewpoint. The noise is sup-

pressed by combining multiple images as described in Sec-

tion 3.1. Contrast is enhanced by the modified Wallis filter

of Section 3.4.



Figure 7. Noise suppression and contrast enhancement: Top: Ex-

ample image (Cropped details marked in blue); From top to bot-

tom: SE, SEW, SEBW, ME-30, -16, -8, -4, -2, -1 crops.

The blue squares within the image shown at the top of Figure 7

denote four different image details. While the first row shows

a zoom into these parts within the JPG image (SE), the second

and third row show these image patches after being processed by

either the Wallis filter alone (SEW) or in combination with the

BM3D filter (SEBW), respectively.

The images appear grayish since the Wallis filter normalizes mean

and variance of the color channels. The contrast in general and

especially for fine structures is considerably increased, making

small details visible that had been hidden before. The texture of

the chair is clearly recognizable now, as well as small foldings of

the cushion. It should be noted, that the SEW images still contain

the full amount of noise, only the contrast is enhanced.

The noise in the SEBW images in the third row is locally sup-

pressed by the BM3D filter before contrast is enhanced by the

Wallis filter. The fine textures are mostly preserved, while the

noise appears to be reduced. The image patches from the wall

seem to contain image structures as well, which are not visible at

all in the original SE images, but become slowly recognizable in

the enhanced images (SEW as well as SEBW).

The fourth till the last row show the results of the proposed frame-

work with decreasing number of images per viewpoint (ME-30,

-16, -8, -4, -2, -1, respectively). Especially in the fourth row (cor-

responding to ME-30) the structures on the wall become clearly

recognizable: A small scratch in the wall plaster as well as a hand

print. The intensity difference of these structures is so small,

that they are hardly visible even for the human eye in the real

world. The fewer images are used per viewpoint, the less obvi-

ous the corresponding image texture is i.e. it becomes dominated

by noise. The last row (ME-1) basically corresponds to the sec-

ond row (SEW). The visual discrepancy is caused by a couple of

subtle differences during the processing: Firstly, while the second

(and third) row are based on JPG images, the proposed approach

is using raw data. Thus, there are no artefacts of the JPG com-

pression. Secondly, while the maximal gain had to be adjusted

manually for the Wallis filter, it is automatically computed by the

proposed method based on an estimate of the remaining image

noise. If only a single image is used, the remaining noise is esti-

mated as zero, which leads to an unconstrained gain. While the

increased contrast of ME-1 is visually pleasing, it is important to

note that the apparent details are mostly random noise and not

actual structure. The details in ME-30 on the other hand are real,

as evidenced by the plausible shading in the wall crops.

It should be noted that the visualization as discussed above is at

best a qualitative cue for an increased performance. Since the

application of the proposed framework is image-based 3D recon-

struction, the influence on the final 3D point cloud is analyzed

instead of assessing the quality of the intermediate results.

Figure 8 shows the point cloud based on the same image data

as visualized in Figure 7 obtained by an successive application

of the custom SfM pipeline (to obtain the camera parameters)

and PMVS2 (to compute the dense reconstruction). The first row

shows the reconstruction for SE (left), SEW (middle), and SEBW

(right). The remaining rows show results of the proposed pipeline

with increasing number of images (i.e. ME-1,-2,-4,-8,-16,-30).

The number of reconstructed points is summarized in Figure 9.

There is no significant difference in the number of reconstructed

points between SE and SEW. However, the points of the wall

around the chair are wrongly reconstructed in the first case. They

do not lie on the planar surface of the wall in the reconstruction

but are strongly distorted towards the chair. These wrong recon-

structed parts are not existent in SEW-based reconstruction, while



Figure 8. Wall dataset. Top row: SE, SEW, SEBW; Second to

fourth row: ME-1, -2, -4, -8, -16, -30 images, respectively.

other parts of the scene, majorly on the backrest of the chair, are

more complete.

For SEBW the changes are more prominent, visible on the right

top part of Figure 8 as well as in Figure 9. Chair and cushion

are significantly more completely reconstructed (the number of

points increased by 35% from 130, 939 for SEW to 176, 782 for

SEBW). Interestingly, the first spots on the white wall got recon-

structed as well. These points do lie on or close to the plane in

contrast to the wall points reconstructed only on the basis of the

unprocessed JPG images.

This indicates the importance of noise suppression for 3D recon-

struction, which is even more emphasized by the results of the

proposed processing chain. While the reconstruction based on a

single image (ME-1) is (not surprisingly) close to the SEW point

cloud, already using two images (ME-2) outperforms the SEBW-

based reconstruction by far. Not only cushion as well as seat

and backrest of the chair are well reconstructed, but also a sig-

nificant amount of wall pixels. The number of points increased

by nearly 80% from 132, 443 using one image to 237, 562 us-

ing two images. This trend is continued by using more images

per viewpoint, although the steepness of the increase becomes

significantly smaller after eight images. For the maximum of 30

used images the white wall is completely reconstructed besides a

few small remaining holes at the top where the cameras have less

overlap. The final number of reconstructed points is 591, 890 -

about three times as many as in the standard case of using only

one unprocessed JPG image.
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Figure 9. Wall dataset. Number of points of the dense reconstruc-

tion for different numbers of images per viewpoint

4.2 Cat dataset

The Cat dataset consists of images of a cat sculpture. The surface

is homogeneously white and shows barely any texture (in the im-

ages as well as to the human eye in the real world). The top left

of Figure 10 shows an example image. The dataset consists of 30
images for each of the 14 different viewpoints with an average

baseline of 10 cm.

Two reconstructions are conducted based on VSFM and PMVS2

using the standard data (single exposure JPG images) on the one

hand as well as the proposed approach (multi exposure with mod-

ified Wallis) on the other hand. The top right of Figure 10 shows

the number of points within the dense reconstructions divided

into two groups: Points on the cat (blue bars) and points in the

background (red bars). The background (in particular the surface

of the ground) contains strong texture. Consequently, both meth-

ods are able to reconstruct it well and lead to a similar number

of reconstructed points. Even for the cat there is not much differ-

ence with respect to the number of points, if only a few images

are used: The number of points increased from 160, 465, over

160, 639, to 242, 250, for the standard approach and the proposed

approach with 2 and 30 images, respectively. However, the accu-

racy of the reconstruction differs largely. While the second row

of Figure 10 shows the reconstructed point clouds of SE and ME-

30, respectively, the last four rows show the meshing result based

on SE, ME-1, ME-2, and ME-30, respectively. The standard ap-

proach results in as many points as ME-2 (and nearly twice as

many as ME-1), but roughly 20% of them contain severe errors.

Especially the back of the cat is either missing or reconstructed

at wrong positions. The ME-1 based reconstruction (despite con-

taining less points) contains less outliers. The ME-30 based re-

construction is very complete as well as (visually) accurate.

5. CONCLUSION AND FUTURE WORK

Weakly-textured surfaces pose a great challenge for MVS re-

constructions because the texture is effectively hidden by sensor

noise and can no longer reliably be matched between images. We

propose to suppress random as well as fixed pattern noise. The

former through averaging of multiple exposures, the latter with

the aid of a fixed pattern noise model that is estimated from test

images. The enhanced image is high-pass filtered with locally

varying filter gains to make better use of the limited numerical

precision in 8-bit per channel images. Experiments show that the

enhanced images result in significantly better reconstructions of

weakly-textured regions in terms of precision and completeness.

The improved performance comes at the expense of a significant

increase in the required amount of images and the necessity of

shooting with a tripod. Both resulting in longer acquisition times

and reduced convenience. The overhead of calibrating the fixed
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pattern noise might as well be undesirable in some situations. The

achieved gains quickly diminish after about 20 to 30 images, al-

though this is already sufficient for most use-cases. Standard re-

construction pipelines benefit the most of the proposed approach

in cases where the texture strength is just below the threshold

necessary for a successful matching.

Besides the obvious usage in MVS reconstruction, there are ad-

ditional application scenarios in other areas. Light field capture

is usually performed with a fixed camera rig or a slide. In this

scenario repeated shooting from the same vantage point is not

an inconvenience. Automatic alignment methods (such as im-

plemented by Google’s HDR+ in Android) might be explored as

well for applications without tripods. It is unclear though, what

the impact on the internal camera calibration is. The proposed

approach can easily be extended to capture wider, HDR exposure

ranges by combining images of different exposure times. Initial

experiments look promising, though a more thorough analysis of

the benefits and use cases is necessary. Operating directly on the

JPG images instead of the RAW images was tested shortly, since

not all cameras allow access to the RAW image data. Although

some improvements can be seen, the compression artifacts seem

to be insufficiently random. It is possible that better results can

be achieved if the sensor noise and thus the randomness of the

artifacts is increased by selecting a higher ISO level.
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